1513.1100 MINIMUM FLOW RATES.

Pressure relief valves for excessive heat or fire protection used on containers covered by parts 1513.0300 to 1513.0380 and 1513.1000 to 1513.1070 must be constructed to discharge at not less than the rates required in this part before the pressure is in excess of 121 percent of the maximum allowable working pressure of the container. Relief protection for any other reason, except refrigerated storage, must use ASME UG-125 through UG-136.

Surface	Flow Rate,	Surface	Flow Rate,	Surface	Flow Rate,
Area,	CFM	Area,	CFM	Area,	CFM
Sq.Ft.	Aır	Sq.Ft.	Aır	Sq.Ft.	Aır
20	258	185	1,600	900	5,850
25	310	190	1,640	950	6,120
30	360	195	1,670	1,000	6,380
35	408	200	1,710	1,050	6,640
40	455	210	1,780	1,100	6,900
45	501	220	1,850	1,150	7,160
50	547	230	1,920	1,200	7,410
55	591	240	1,980	1,250	7,660
60	635	250	2,050	1,300	7,910
65	678	260	2,120	1,350	8,160
70	720	270	2,180	1,400	8,410
75	762	280	2,250	1,450	8,650
80	804	290	2,320	1,500	8,900
85	845	300	2,380	1,550	9,140
90	885	310	2,450	1,600	9,380
95	925	320	2,510	1,650	9,620
100	965	330	2,570	1,700	9,860
105	1,010	340	2,640	1,750	10,090
110	1,050	350	2,700	1,800	10,330
115	1,090	360	2,760	1,850	10,560
120	1,120	370	2,830	1,900	10,800
125	1,160	380	2,890	1,950	11,030

2			REVISOR			1513.1100
130	1,200	390	2,950	2,000	11,260	
135	1,240	400	3,010	2,050	11,490	
140	1,280	450	3,320	2,100	11,720	
145	1,310	500	3,620	2,150	11,950	
150	1,350	550	3,910	2,200	12,180	
155	1,390	600	4,200	2,250	12,400	
160	1,420	650	4,480	2,300	12,630	
165	1,460	700	4,760	2,350	12,850	
170	1,500	750	5,040	2,400	13,080	
175	1,530	800	5,300	2,450	13,300	
180	1,570	850	5,590	2,500	13,520	

Surface Area = Total Outside Surface Area of Container in Square Feet. If the surface area is not stamped on the nameplate or when the marking is not legible, the area can be calculated by using one of the following formulas:

- Cylindrical container with hemispherical heads
 Area = overall length in feet times outside diameter in feet times 3.1416.
- (2) Cylindrical container with other than hemispherical heads
 Area = (overall length in feet plus 0.3 outside diameter in feet) times outside diameter in feet times 3.1416.
- (3) Spherical containerArea = outside diameter in feet squared times 3.1416.

Flow Rate–CFM Air = cubic feet per minute of air required at standard conditions, 60 degrees Fahrenheit and atmospheric pressure (14.7 psia).

The rate of discharge may be interpolated for intermediate values of surface area. For containers with total outside surface area greater than 2,500 square feet, the required flow rate can be calculated using the formula, Flow Rate CFM Air = 22.11 $A^{0.82}$ where A = outside surface of the container in square feet.

CONVERSION FACTORS:

ft² x 0.092 903 = m² CFM x 0.028 317 = m³/min ft x 0.304 8 = m

Statutory Authority: MS s 18C.121

History: 21 SR 277

Published Electronically: September 10, 2007