CHAPTER 7678 DEPARTMENT OF PUBLIC SERVICE ENERGY DIVISION MINNESOTA ENERGY CODE

 THERMAL TRANSMITTANCE CALCULATIONS FOR OPAQUE

 FOR OPAQUE

 ENVELOPE COMPONENTS, HVAC SPECIFIC

 EFFICIENCIES

 7678 0100
 AUTHORITY AND PURPOSE

 7678 0200
 APPLICATION

 7678 0300
 INCORPORATIONS BY REFERENCE

 7678 0400
 DEFINITIONS

 7678 0400
 DEFINITIONS

 7678 0400
 DEFINITIONS

 7678 0400
 DEFINITIONS

 7678 0500
 ENVELOPE THERMAL

 TRANSMITTANCE CALCULATIONS

FENESTRATION PRODUCTS MECHANICAL EQUIPMENT EFFICIENCY REQUIREMENTS SERVICE WATER HEATING EQUIPMENT EFFICIENCY REQUIREMENTS EFFECTIVE DATE

NOTE This chapter was adopted at 23 SR 145 on July 20, 1998 It becomes effective on July 20, 1999

THERMAL TRANSMITTANCE CALCULATIONS FOR OPAQUE ENVELOPE COMPONENTS; HVAC SPECIFIC EFFICIENCIES

7678.0100 AUTHORITY AND PURPOSE.

This chapter is adopted pursuant to Minnesota Statutes, section 216C 19, subdivision 8 The purpose of this chapter is to provide a basis for thermal transmittance calculations for opaque envelope components for determining energy code compliance as required in chapters 7670, 7672, and 7674 This chapter also provides specific efficiencies for heating, ventilating, and air conditioning equipment and service water heating equipment

Statutory Authority: MS s 216C 19

History: 23 SR 145

7678.0200 APPLICATION.

This chapter applies to buildings and equipment covered by chapters 7670, 7672, 7674, and 7676

Statutory Authority: MS s 216C 19

History: 23 SR 145

7678.0300 INCORPORATIONS BY REFERENCE.

Subpart 1 Incorporated items. The following standards and references are incorporated by reference

A. ASHRAE, 1997 Handbook of Fundamentals, chapters 25 to 28,

B. Code of Federal Regulations, title 10, part 430, Energy Conservation Program for Consumer Products,

C Code of Federal Regulations, title 10, part 435, Energy Conservation Voluntary Performance Standards for New Commercial and Multi–Family High Rise Residential Buildings Mandatory for New Federal Buildings,

D ASTM C236-89 (1993)e1, Steady-State Thermal Performance of Building Assemblues by Means of a Guarded Hot Box,

E ASTM C976–90 (1996)e1, Thermal Performance of Building Assemblies by Means of a Calibrated Hot Box,

F. NFRC 100–91, Procedure for Determining Fenestration Product Thermal Properties (Currently Limited to U–values), and NFRC 100 (1997 ed.), Procedure for Determining Fenestration Product U–Factors, National Fenestration Rating Council,

MINNESOTA RULES 1998 MINNESOTA ENERGY CODE 7678.0400

G NFRC 200, Procedure for Determining Fenestration Product Solar Heat Gain Coefficients at Normal Incidence (1995), National Fenestration Rating Council, and

H ASTM E283–91, Standard Method of Test for Rate of Air Leakage through Exterior Windows, Curtain Walls, and Doors

Subp 2 Availability. All standards and documents incorporated by reference are available for public inspection at the Minnesota State Law Library and through the Minnesota interlibrary loan system.

Statutory Authority: MS s 216C 19

History: 23 SR 145

7678.0400 DEFINITIONS.

Subpart 1 Definitions. The definitions in this part apply to this chapter.

Subp 2 Annual fuel utilization efficiency or AFUE. "Annual fuel utilization efficiency" or "AFUE" means the efficiency descriptor for furnaces and boilers determined using test procedures prescribed in Code of Federal Regulations, title 10, part 430

Subp 3 Boiler capacity. "Boiler capacity" means the rate of heat output m Btu/h measured at the boiler outlet, at the design inlet and outlet conditions, and rated fuel/energy input

Subp 4. Efficiency, combustion or Ec. "Efficiency, combustion" or "Ec" means 100 percent minus flue loss

Subp. 5 Efficiency, thermal or Et. "Efficiency, thermal" or "Et" means the results of a thermal efficiency test referenced in Code of Federal Regulations, title 10, part 430 or 435

Subp 6 Energy efficiency ratio or EER. "Energy efficiency ratio" or "EER" means the ratio of net equipment cooling capacity in Btu/h to total rate of electric input in watts under designated operating conditions, as determined by Code of Federal Regulations, title 10, part 430 or 435

Subp 7 **Heating degree day.** "Heating degree day" means a unit, based upon temperature difference and time, used in estimating fuel consumption and specifying nominal heating load of a building m winter For any one day, when the mean temperature is less than 65 degrees Fahrenheit, there exist as many degree days as there are Fahrenheit degrees difference in temperature between the mean temperature for the day and 65 degrees Fahrenheit

Subp 8 Heating seasonal performance factor or HSPF. "Heating seasonal performance factor" or "HSPF" means the total heating output of a heat pump during its normal annual usage period for heating, in Btu, divided by the total electric energy input during the same period, in watt-hours, as determined by Code of Federal Regulations, title 10, part 435

Subp 9 Integrated part load value or IPLV. "Integrated part load value" or "IPLV" means a smgle number figure of ment for air-conditioning and heat pump equipment based on weighted operation at a set of less than full capacities for the equipment, as determined by Code of Federal Regulations, title 10, part 435

Subp 10 **Once-through system.** "Once-through system" means an HVAC or refrigeration system used for any type of temperature or humidity control application using groundwater that circulates through the system and is then discharged without reusing it for a higher priority purpose

Subp. 11 **Roof/ceiling assembly.** "Roof/ceiling assembly" means the surface area of all components of the roof/ceiling envelope through which heat flows, thus creating a building transmission heat loss or gam, where such assembly is exposed to outdoor air and encloses a conditioned or semiconditioned space

Subp. 12 Seasonal energy efficiency ratio or SEER. "Seasonal energy efficiency ratio" or "SEER" means the total cooling output of an air conditioner during its normal annual usage period for cooling, in Btu/h, divided by the total electric energy input during the same period in watt hours, as determined by Code of Federal Regulations, title 10, part 430 or 435

Subp 13 Thermal resistance or R. "Thermal resistance" or "R" means the reciprocal of thermal transmittance (h ft² \circ F/Btu)

MINNESOTA RULES 1998 7678.0400 MINNESOTA ENERGY CODE

Subp 14 **Thermal transmittance or U.** "Thermal transmittance" or "U" means the coefficient of heat transmission (air-to-air) Thermal transmittance is the time rate of heat flow per unit area and unit temperature differential between the warm side and cold side of air films (Btu/h ft² °F)

Subp. 15 Thermal transmittance, overall or U_0 . "Thermal transmittance, overall" or " U_0 " means the overall thermal transmittance of an exterior building envelope component, such as a wall, floor, or roof/ceiling The value of U_0 is calculated by the parallel path heat flow method using the areas and thermal transmittance values of the various elements, such as windows, doors, and opaque surfaces that comprise the gross area of the building component.

Statutory Authority: MS s 216C.19

History: 23 SR 145

7678.0500 ENVELOPE THERMAL TRANSMITTANCE CALCULATIONS.

Subpart 1 General. The thermal transmittance of thermal envelope components must be determined in accordance with this part

Subp 2 **Overall thermal transmittance.** Overall thermal transmittance must be determined m accordance with this subpart. The parallel heat flow U_0 is the area weighted average of the thermal transmittance of the components of an overall assembly

The equation for thermal transmittance of an assembly is as follows.

$$U_0 = (A_1/R_1 + A_2/R_2 + A_3/R_3 +)/A_0$$

Where '

 A_1, A_2, A_3 , = the cross-sectional area of the different elements, such as opaque walls, windows, and doors

 R_1, R_2, R_3 , = the cross-sectional R-value of the different elements

 A_0 = the gross area of the element or overall assembly

Subp 3 Thermal transmittance of opaque building components. Thermal transmittance of opaque building components must be determined according to this subpart

EXCEPTION Calculations performed by a professional engineer registered in Mmnesota according to the procedures in the ASHRAE Handbook of Fundamentals, Chapter 27

A. When return air ceiling plenums are employed, the roof/ceiling assembly must.

(1) for thermal transmittance purposes, not melude the ceiling proper nor the plenum space as part of the assembly, and

(2) for gross area purposes, be based upon the mterior face of the upper plenum surface

B Calculation of overall thermal transmittance for framed walls must be based upon the percentage of wall area in this item.

FRAMING AREA FACTORS FOR LOAD BEARING STUD WALLS

Stud Spacing	Studs and Headers	Insulated Cavity		
16 mches	23 percent	77 percent		
24 mches	17 percent	83 percent		

FRAMING AREA FACTORS FOR BLOCK WALLS WITH WOOD STUD FURRING

Stud Spacing	Studs and Headers	Insulated Cavity
16 inches	12 percent	88 percent
24 inches	9 percent	91 percent

MINNESOTA RULES 1998 MINNESOTA ENERGY CODE 7678.0500

C The proposed design may take into account the thermal mass of the building components in considering energy conservation This applies only for walls in locations with less than 8,000 heating degree days and a base temperature of 65 degrees Fahrenheit with a heat capacity equal to or exceeding 6 0 Btu/ ft² °F The required wall thermal transmittance is adjusted according to the table in this item

Required Value of U _w without Consideration of Thermal Mass	Required Value of U _w with Consideration of Mass (position of insulation)					
	Exterior of wall mass	Interior of wall mass	Integral with wall mass			
0 20 0 18 0 16 0 14 0 12 0 10 0 08 0 06 0 04	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 0 \ 22 \\ 0 \ 20 \\ 0 \ 18 \\ 0 \ 16 \\ 0 \ 13 \\ 0 \ 11 \\ 0 \ 09 \\ 0 \ 07 \\ 0 \ 05 \end{array}$			
	rsion to metric (SI) u		T 01			
Unit of Measure	Multiply	Ву	To Obtain Metric Unit			
Thermal transmittance	R–value (h∙ft ² •°F/Btu)	0 578	RSI–value (m ² •°C/W)			
Thermal conductance	U–value (Btu/h/ft ² /°F)	1 73	U-value (W/m ² •°C)			
Heat capacity	(Btu/lb/°F)	0 43	k/kg/°K			

Subp 4 Wood frame construction. The thermal transmittance of wood frame construction must be determined by the parallel heat flow method in this subpart. The parallel heat flow U-value is the area weighted average of the thermal transmittance of the components of an assembly

A The equation for thermal transmittance of an assembly is as follows

 $U = (A_1/R_1 + A_2/R_2 + A_3/R_3 + .)/A_0$

Where:

 $A_1, A_2, A_3, ... =$ the cross-sectional area of the different elements, such as framing and insulated cavities Subpart 3, item B, must be used to calculate insulated and framing areas unless different values are shown by documentation

 $R_1, R_2, R_3, ... =$ the cross-sectional R-value of the different elements

 A_0 = the gross area of the element or overall component

179

MINNESOTA RULES 1998 7678.0500 MINNESOTA ENERGY CODE

B. The U-values table for wood framed wall assemblies is as follows

WOOD FRAMED WALL ASSEMBLIES

With Foam Plastic

				Insula	tion Shea	thing	
Т	OSB or Insulation Plywood		25/32 Fiberboard	Polyst (m) (R-5/1	Extruded Polystyrene (m) (R–5/1nch - minimum)		rate ked urd)
Framing	R-Value	Sheathing	Sheathing	0 75	· 1	0 75	1
			Total Opaqu	e Wall U	-values*		
2x4	13	0 074	0.067	0 060	0 056	0 055	0.050
16"	15	0.067	0 061	0 055	0.052	0 051	0.046
0 C **							
2x6	19 ,	0 056	0 051	0 047	0 045	0 044	0 041
16"	21	0 049	0 046	0 043	0 041	0 040	0 037
0.C **			i.				

*This U-value includes studs and insulated cavity as well as siding, sheathing, gypsum board, and air films

**o c refers to "on center" spacing of studs, rafters, and trusses

C The U-values table for wood framed rim and band joists is as follows

WOOD FRAMED RIM AND BAND JOISTS

			Wıth H Insula	,		
	Plywood Fiberboard Polystyrene 1so (m) (m) (R-5/inch (fo		32 Extruded berboard Polystyre (in) (R-5/inch		Poly– 1socyanu (11) (fo1l–bac foam boa	ked
Rim/Band Joist Description	Sheathing	Sheathing	0 75	1	0.75	,
		Rım/Band J	01st U–va	lues*		7
2x or TGI, R–13 batt	0 074	0 067	0 060	0 056	0 055	0 050
2x or TGI, R–19 batt	0 045	0 042	0 040	0 038	0 037	0.035
2x or TGI, R–21 batt	0 042	0 039	0 037	0 035	0 035	0 033

MINNESOTA ENERGY CODE 7678.0500

Floor truss**, R–13 batt		T			t	
Floor truss**, R–19 batt	0 053	0 049	0.045	0 043	0 042	, 0 039
Floor truss**, R–21 batt	0 048	0 045	0 042	0 040	0 039	0 037
Floor truss, aır seal** ^k	0 061	0 056	0 051	0 048	0 047	0 043

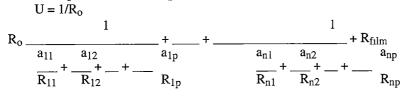
*This U-factor includes floor joists or trusses and insulated cavity as well as siding, sheathing, and air films

**These values are for bottom chord bearing trusses For top chord bearing trusses, include the truss area as part of the framed wall

***Air-sealed design incorporates 1-1/2 inches of polystyrene and 1-1/2 inches of polyisocyanurate board to form an air-vapor barrier

D Roof/ceiling assemblies with rafter, truss, or scissors truss construction is as follows

1
U-value
0 033
0 026
0 022
0 020


E Roof/ceiling assemblies with cathedral ceiling (solid lumber, not truss framing) is as follows

Batt Insulation	With R–5 Sheathing	Without Insulation Sheathing
R-value	5	values
25	0 040	0 050
30	0 033	0 040
38	0 026	0.030

Subp 5 Masonry block walls. To determine the thermal transmittance of masonry block walls with insulation inserts or filled cores, the series–parallel method must be used The series–parallel transmittance calculation shall be deemed in compliance with this subpart if the product is certified under the National Concrete Masonry Association's Certification of Thermal Performance of Integrally Insulated Concrete Masonry Walls

A The series-parallel heat flow method is a procedure that accounts for the fact that heat does not always flow straight through a wall

The equations for series-parallel thermal transmittance are as follows

Where.

 R_o = total thermal resistance of the representative concrete masonry wall, including surface air film resistances.

7678.0500 MINNESOTA ENERGY CODE

 a_{11} = proportionate area of thermal path number 1 of thermal layer number 1 R_{11} = thermal resistance of thermal path number 1 of thermal layer number 1 a_{1p} = proportionate area of thermal path number "p" of thermal layer number 1 R_{1p} = thermal resistance of thermal path number "p" of thermal layer number 1. a_{np} = proportionate area of thermal path number "p" of thermal layer number "n" R_{np} = thermal resistance of thermal path number "p" of thermal layer number "n" R_{np} = thermal resistance of thermal path number "p" of thermal layer number "n" R_{film} = thermal resistance of inside air film (0 mph) and outside air film (15 mph)

Additional Insulation

B The U-value table for normal weight blocks is as follows Normal Weight Concrete Blocks (132 PCF) U-Value Table¹

Block Width. 12 Inches

14 11101105								
Core	Block Only	Туре	Т	hıckı	ness (1n)	2x4 studs	2x2 furring
	Omy		07	75	1	2	R–11	1 5 inch
grouted grouted grouted	0 51 0 51 0.51	expanded ² extruded ³ poly– 1socyanurate ⁴	02 01 01	6	0.17 0 13 0 10	0 10 0 081 0 059		0 13
grouted empty empty	0 51 0 45 0.45	fiberglass expanded extruded	0101		0 16 0 13	0 101 0 079	0 083	0 13
empty	0 45 °	poly– 1socyanurate	0 1		0.10	0 059	0.001	
empty filled ⁵ filled filled	0 45 0.20 0 20 0.20	fiberglass expanded extruded poly–	0 1 0 1 0 0		0 11 0 097 0 080	0 080 0 065 0.051	0 081	0 0 9 4
filled UFFI ⁶ UFFI UFFI	0 20 0 19 0 19 0.19	isocyanurate fiberglass expanded extruded poly–	0 1 0 1 0.0	1	0 11 0 094 0.078	0 078 0 064 0 050	0 066	0 09
UFFI	0 19	isocyanurate fiberglass					0 065	

¹All U–values mclude air film coefficients and one–half inch gypsum board when insulation is present

²Expanded is typically white "bead board" foam plastic

³Extruded is typically colored R–5 per inch of foam plastic

⁴Polyisocyanurate (iso board) is foam plastic, foil faced on both sides

⁵Filled with vermiculite or EPS beam insulation

⁶UFFI means filled with urea formaldehyde

182

MINNESOTA RULES 1998 MINNESOTA ENERGY CODE 7678.0500

Normal Weight Concrete Blocks (132 PCF) U-Value Table¹

Block Widt 10 Inches	th		Add	itional I	nsulation		
Core	Block	Туре	Thick	mess (1n)	2x4	2x2
	Only		0 75	ʻ1	2	studs R–11	furring 1 5 inch
grouted grouted grouted	0 56 0 56 0 56	expanded ² extruded ³ poly– 1socyanurate ⁴	0.20 0 17 0.13	0 17 0 14 0 11	0 11 0 082 0 060		0 076
grouted empty empty empty	0 56 0 46 0 46 0 46	fiberglass expanded extruded poly– isocyanurate	0 19 0 16 0 12	0 16 0 13 0 102	0 10 0 079 0 059	0 085	0 073
empty filled ⁵ filled filled	0 46 0 23 0 23 0 23	fiberglass expanded extruded poly– isocyanurate	0 13 0 12 0.098	0.12 0 10 0 083	0 083 0 068 0 052	0 082	0 100
filled UFFI ⁶ UFFI UFFI	0 23 0 22 0 22 0 22	fiberglass expanded extruded poly– isocyanurate	0 13 0 11 0 10	0 12 0 10 0 082	0 082 0 067 0 051	0 069	0 062
UFFI	0 22	fiberglass				0.068	

¹All U-values include air film coefficients and one-half inch gypsum board when insulation 1s present

²Expanded is typically white "bead board" foam plastic.

³Extruded is typically colored R–5 per inch of foam plastic

⁴Polyisocyanurate (iso board) is foam plastic, foil faced on both sides

⁵Filled with vermiculite or EPS beam insulation

⁶UFFI means filled with urea formaldehyde

Normal Weight Concrete Blocks (132 PCF) U-Value Table¹

Block Width 8 Inches

Additional Insulation

Core	Block Type		Thickness (in)				2x4	2x2
	Only		0 75	5	1'	2	studs R–11	furring 1 5 inch
grouted grouted grouted	0 62 0 62 0.62	expanded ² extruded ³ poly– 1socyanurate ⁴	0 21 0 17 0 13	7	0 18 0 14 0 11	0 11 0 083 0 061		0 014 ,
grouted empty empty empty	$\begin{array}{c} 0.62 \\ 0 \ 48 \\ 0 \ 48 \\ 0 \ 48 \end{array}$	fiberglass expanded extruded poly–	0 19 0 16 0 13	5	0 16 0 13 0 10	0 103 0 080 0 059	0 086	0 13
empty filled ⁵	0 48 0 27	isocyanurate fiberglass expanded	0 14	1	0 13	0 088	0 083	0 11

Copyright © 1999 Revisor of Statutes, State of Minnesota. All Rights Reserved.

7678.0500 MINNESOTA ENERGY CODE

filled	0 27	extruded	0 13	0 11	0 070		
filled	0 27	poly– 1socyanurate	0.10	0 088	0 054		
filled	0 27	fiberglass				0 072	
UFFI ⁶	0,25	expanded	0 14	0 12	0 086		0 10
UFFI	0 25	extruded	0 12	0 11	0 069		
UFFI	0 25	poly-	0.10	0.086	0.053		
		isocyanurate					
UFFI	0 25	fiberglass				0 071	

¹All U–values include air film coefficients and one–half inch gypsum board when insulation is present

²Expanded 1s typically white "bead board" foam plastic

³Extruded 1s typically colored R–5 per inch of foam plastic

⁴Polyisocyanurate (iso board) is foam plastic, foil faced on both sides

⁵Filled with vermiculite or EPS beam insulation

⁶UFFI means filled with urea formaldehyde

C The U-value tables for lightweight blocks are as follows

Light Weight Concrete Blocks (100 PCF) U-Value Table¹

Block Width 12 Inches

Additional Insulation

Core	Block	с Туре	Thick	tness (1n)	2x4	2x2
	Only		0 75	1	2	studs R–11	furring 1.5 inch
grouted grouted grouted	0 42 0.42 0 42	expanded ² extruded ³ poly– isocyanurate ⁴	0 18 0 15 0 12	0 16 0 13 0 10	0 10 0 078 0 058		0 12
grouted empty empty empty	0 42 0 37 0 37 0 37	fiberglass expanded extruded poly–	0 17 0 15 0 12	0 15 0 12 0 097	0 097 0 076 -0 057	.0.080	0 12
empty filled ⁵ filled filled	0 37 0 12 0 12 0 12 0 12	isocyanurate fiberglass expanded extruded poly– isocyanurate	0 089 0 081 0 072	0 082 0 074 0 063	0 063 0 054 0.044	0 078 ,	0.072
filled UFFI ⁶ UFFI UFFI	0 12 0 11 0 11 0 11	fiberglass expanded extruded poly–	0.083 0 076 0 068	0.077 0 069 0 060	0 060 0 052 0 042	0 054	0 068
UFFI	0 11	1socyanurate fiberglass				0 052	

¹All U–values include air film coefficients and one–half inch gypsum board when insulation is present

²Expanded is typically white "bead board" foam plastic

³Extruded is typically colored R–5 per mch of foam plastic

⁴Polyisocyanurate (iso board) is foam plastic, foil faced on both sides

⁵Filled with vermiculite or EPS beam insulation.

⁶UFFI means filled with urea formaldehyde

Copyright © 1999 Revisor of Statutes, State of Minnesota. All Rights Reserved.

1.0

MINNESOTA ENERGY CODE '7678.0500

÷

Lıg	ght Weig	ht Concrete Bl	ocks	(100 P	CF) U–V	alue Tab	le ¹	· · ·	
Block Wie 10 Inches	dth:	1.N. 1. 2.1		Add	litıonal I	nsulation		. /	:
Core	Block Only	Туре	, `` 	Thicl	ģness (11	.)	2x4 studš	2x2 furring	+ f }
	Olly	, , , ,		0.75	1	2: • •		1.5 inch	, î î
grouted grouted	0.45	expanded ² extruded ³		0.19 0 1.6	0.16 110 13	0 10		0 13	,
grouted	0 45	poly_		0 12	0.10	0 059	* 3 x y * *	' *1 '	Ļ
grouted	0 45	isocyanurate ⁴ fiberglass		1 I.		در ^{مار} ی ۱۰	0.081		
empty	0.37	expanded n-		0 17	0 15	0 097	1 T 11	··· ·· · · · · · · · · · · · · · · · ·	1 7
empty	0 37	extruded	i	0 14	012 ,	. 0 076	11 1	0,10	, x
empty	0 37	poly–		0.12	0.097.	0 057	1. 1. 1. 1.	- /	
		isocyanurate							
empty	0 37	fiberglass	,				·· 0 078 [·]		4 1
		expanded	$\{i_{i}\}_{i\in I}$				"无"的"	0.079	
filled	0 14	extruded	1	0 089	0 080			. U 'r i '.	er.
filled	0 14	poly–		0 078	0 068	0 046		1- N 6. 1	1,
·c	1011	isocyanurate		ı. ¹ .	6. ¹)'			,	
filled		fiberglass)	0 058		
UFFI ⁶	0.13	expanded		0.092	0.085	0.065		00/1	
UFFI	0.13	extruded		0 084			••••	Rept 1	,
UFFI	0.13	poly-		0.073	0 065	0.044			+1
UFFI	`'0 13 <i>'</i>	isocyanurate fiberglass	ر ' ع ر	an garta La Ca	*7) is	یلی≮ د د د' ۲	0 055	1	2
¹ All U–va ¹ 1s present	luesincl	ude air film coe	ffici	ents and	lone-ha	lfınch'gy	psum boa	ard when ins	ulation
² Expanded	d is typic	ally white "be	ad h	oard" fo	am plast	he		,	17 F - 1
		ally colored R-		٤,		18 G. C. M.	1 × 1 × 1		
⁴ Polvisocy	vanurate	(1so board) is i	foam	n plastic	foil fac	ed on bot	th sides.		
	-	culite or EPS b		-				7	
⁶ UFFI me	ans fille	d with urea for	malc	lehyde					÷
Lio	ht Weig	ht Concrete Bl	ocks	$(100^{\circ}P)$	CF) U–V	alue Tab	le ¹	15	<i>s</i>
		,	ound	(100 1,				14	
Block Wi	dth.	-		ς.					·
8 Inches	e es .	۰ ۲۰		Add	litional I	nsulation			
Core	Block	Туре					2x4	2x2	
	Only	x	-	075	ʻ' ì	2	studs R–11	furring 1.5 inch	1 I 1 1
grouted	0.51	expanded ²		0 20	0 17	0 10		0 13	
grouted	0 51	extruded ³		0.16,		0.081			e
grouted	0.51	poly-		0 13′	0 10	0.060			
-		1socyanurate4		•		,	1	1	
grouted	0.51	fiberglass		1.10		0	0 083	_	
empty	0,40	expanded		0.18	0.15	0 098		0 16	
empty	040	extruded		0.15	0 13	0 077		k	ĩ
empty	0 40	poly	۶.	0 12	0 098	0.058	, ז ין ,		
		isocyanurate		, , , , 7 ¹ / , ,			0.091	, tytaka	
empty filled ⁵	0.40 0 17	fiberglass expanded		,0.11		[.] 0.074		0.086	
		-							

Copyright © 1999 Revisor of Statutes, State of Minnesota. All Rights Reserved.

185

MINNESOTA RULES 1998 7678.0500 MINNESOTA ENERGY CODE

filled filled	0 17 0 17	extruded poly–	0.099 0 085	0 088 0 074	0.061 0 048		
filled	0 17	1socyanurate fiberglass				0 062	
UFFI ⁶	0 15	expanded	0 10	0 094	0 070		0 081
UFFI	0 15	extruded	0 092	0.083	0 059		
UFFI	,015	poly–	0 080	0070	0 047		
UFFI	['] 0 15	isocyanurate fiberglass				0 059	

 $^1\mbox{All}$ U–values include air film coefficients and one–half inch gypsum board when insulation is present

²Expanded 1s typically white "bead board" foam plastic

³Extruded 1s typically colored R–5 per 1nch of foam plastic

⁴Polyisocyanurate (iso board) is foam plastic, foil faced on both sides

⁵Filled with vermiculite or EPS beam insulation

⁶UFFI means filled with urea formaldehyde

Subp 6 Metal buildings. Thermal performance of envelope components of metal buildings with thermal insulation between purlins or girts must be determined by the effective assembly R-value method prescribed in this subpart

A The equation to determine thermal transmittance by effective assembly R-value thermal transmittance method is as follows

 $U_0 = 1/(R_1 + R_e)$

Where

 R_1 = the R-values of series elements excluding the draped insulation and framing.

 R_e = the effective assembly R-value from tables in item B or C Interior air film coefficients are mcluded in these table values

B The equivalent R-value of a purlin or girt system where the system is described in this item

	ASSEMBLY EF	FECTIVE R-	-VALUES (R _e	.)		
Batt Insulation R–value	One Fastener Per Linear Foot of Purlin/Girt Purlin/Girt Spacing (Feet)					
K-value	5	4	3	2		
R-38	11 61	10 18	8 45	6 30		
R-30	11 08	9 79	8.21	6 20		
R-26	10 80	9 59	8.08	6 14		
R-22	10 06	9 04	7 73	5 99		
R-19	9 95	8 95	7 67	5 97		
Batt	Two Fasteners Per Linear Foot of Purlin/Girt					
Insulation	Purlin/Girt Spacing (Feet)					
R–value	5 4 3 2					
R-38	9.96	8 64	7 07	5 19		
R-30	9 56	8.36	6 91	5.12		
R-26	9 35	8 21	6 81	5 09		
R-22	8 80	7 80	6 56	4 98		
R-19	8 71	7 74	6 52	4 96		

C The assembly effective R-value (R_e) is defined in this item for purlin or girt insulation systems where purlin or girt spacing is five feet or greater Foam blocks must be a minimum R-value of five, and a minimum of two pound density

MINNESOTA ENERGY CODE 7678.0500

(1) For assemblies where the blanket insulation is draped over each purlin or grit and a foam block is installed between the purlin or girt and exterior panel, the R_e -values of this subitem apply

	INSULATION R-VALUE					
	10	11	13	19		
EFFECTIVE SYSTEM R-VALUE	98	10 0	12 0	15 3	ſ	

(2) For assemblies with a blanket total R-value of R-30, where a thicker layer is installed uncompressed between each purlin or girt and a thinner layer is draped over each purlin or girt, the R_e -values of this subitem apply

(a) When a foam block 1s installed between the purlin or girt and exterior panel, the $R_e\mbox{-}value$ 1s 24 5

(b) When a foam block 1s not installed between the purlin or girt and exterior panel, the $R_{e}\mbox{-}value$ 15 17 4

(3) For assemblues where purlins or girts are completely filled with R–30, foam blocks of at least one–inch separate purlins or girts from the roof or wall sheet, and continuous insulation board covers the insulation and purlin or girt, the R_e -values of this subitem apply

(a) Where the continuous insulation board is at least R–6, the R_e -value is R–31 4

(b) Where the continuous insulation board is at least R-10, the R_e -value

15 R-43 2

Subp. 7 Metal stud walls. The overall thermal transmittance of metal stud walls are provided in this subpart The U-values given mcluding studs and insulated cavity as well as siding, sheathing, gypsum board, and air films. The table U-values do not include effects of structural framing, which can substantially mcrease the U-value

U-Values for Metal Stud Walls

and Insulated Cavities

With Foam Plastic ' Insulation Sheathing

Sıze of Studs	Stud Spac– ing	Cavity Insul- ation R–value	Insul– ated Cavıty Equıva– lent	Extruded Polystyrene (1n) (R–5/1n m1n1mum)		(1 n	yısocyanı) (foil– ked foam rd)	
-			R'-value	0 75	1	15	0.75	1
				Tot	al Opaque	e Wall U–	values	
2x4 2x4 2x4 2x4 2x4 2x4 2x6 2x6 2x6 2x6 2x6 2x6 2x8 2x8 2x8	16" 16" 24" 24" 24" 16" 16" 24" 24" 24" 24"	11 13 15 11 13 15 19 21 19 21 25 25	55 60 64 66 72 78 71 74 86 90 7.8 96	$\begin{array}{c} 0 \ 086 \\ 0 \ 082 \\ 0 \ 080 \\ 0.078 \\ 0 \ 075 \\ 0 \ 072 \\ 0 \ 075 \\ 0.074 \\ 0 \ 068 \\ 0 \ 066 \\ 0 \ 072 \\ 0.063 \end{array}$	$\begin{array}{c} 0.077\\ 0.075\\ 0.072\\ 0.071\\ 0.068\\ 0.066\\ 0.069\\ 0.067\\ 0.062\\ 0.061\\ 0.066\\ 0.059\\ \end{array}$	$\begin{array}{c} 0 \ 065 \\ 0 \ 063 \\ 0 \ 061 \\ 0 \ 058 \\ 0.056 \\ 0 \ 059 \\ 0 \ 058 \\ 0 \ 054 \\ 0 \ 053 \\ 0 \ 056 \\ 0 \ 051 \end{array}$	$\begin{array}{c} 0 \ 075 \\ 0.072 \\ 0 \ 070 \\ 0 \ 069 \\ 0 \ 067 \\ 0.066 \\ 0.061 \\ 0.059 \\ 0 \ 064 \\ 0 \ 057 \end{array}$	$\begin{array}{c} 0 \ 066 \\ 0.064 \\ 0.062 \\ 0 \ 061 \\ 0 \ 059 \\ 0 \ 064 \\ 0.060 \\ 0 \ 055 \\ 0 \ 055 \\ 0 \ 055 \\ 0 \ 057 \\ 0 \ 052 \end{array}$

*This U-value includes studs and insulated cavity, as well as siding, sheathing, gypsum board, and air film. It does not include structural framing

7678.0500 MINNESOTA ENERGY CODE

Subp 8 **Zone method.** For assemblies with metal components that are not described in subpart 6 or 7, the zone method must be used. The zone method is a procedure in which the thermal transmittance of a surface is computed by dividing the surface into its highly conductive and remaining areas. The highly conductive area is a function of the width or diameter of the metal heat path terminal and the distance from the panel surface to the metal. The respective thermal transmittance of the two areas are separately computed, combined, and then divided by the total cross–sectional area

The equation for zone method thermal transmittance is as follows

 $U = (U_1A_1 + U_2A_2)/A_0$

Where

For the highly conductive area

 A_1 = the highly conductive area

 U_1 = the thermal transmittance of the highly conductive area

For the remainder of the area

 A_2 = the remainder of the area

 U_2 = the thermal transmittance of the remaining area.

 A_o (cross-sectional area of the element) = A1 + A2

The equation for areas is as follows.

 $A_1 = m + 2d, A_2 = A_0 - A_1$

Where

m = width or diameter of the metal heat path terminal.

d = distance from panel surface to metal

Subp 9 Thermal measurement method.

A The overall thermal transmittance value of a building assembly determined by testing must be tested by either ASTM C236 or ASTM C976 by a laboratory meeting the qualities in item B.

B Approved laboratory means any testing facility, including a facility owned or operated by a manufacturer, that has been accredited by one or more of the following agencies to perform the required test

(1) Umted States Department of Commerce, National Voluntary Laboratory Accreditation Program,

(2) American Association for Laboratory Accreditation, Gaithersburg, Maryland; or

(3) Standards Council of Canada, Ottawa, Ontario, Canada

EXCEPTION. In the event that an approved laboratory program is temporarily delayed or is not capable of being accredited to perform a test or tests, a testing laboratory possessing the appropriate equipment, facilities, and qualified personnel to perform the required testing is an approved laboratory

C Product samples must be production line material or representative material as purchased by the consumer or contractor. If the assembly is too large to be tested at one time in its entirety, then either a representative portion must be tested or different portions must be tested separately and a weighted average determined. To be representative, the portion tested must include edges of panels, joints with other panels, typical framing percentages, and thermal short circuits

Statutory Authority: MS s 216C 19

History: 23 SR 145

7678.0600 FENESTRATION PRODUCTS.

Subpart 1. Labeling. All windows must be labeled with their overall assembly U-value according to this part. Labels must not be removed until after ispection of installation

MINNESOTA RULES 1998 MINNESOTA ENERGY CODE 7678.0600

Subp 2. Air infiltration. Fenestration products must have air infiltration rates not exceeding those shown in this subpart. The manufacturer must test for infiltration rates in accordance with ASTM E283–91, and window infiltration rates in accordance with applicable industry standards. A labeled statement from the manufacturer that the product meets or exceeds the requirements of the Model Energy Code shall be deemed to comply with these requirements.

ALLOWABLE AIR INFILTRATION RATE

Operable wmdows	0.34 cfm per lineal foot of operable sash crack or 0 30 cfm per square foot of window area
Residential doors, swinging	0 5 cfm per square foot of door area
Residential doors, swinging	0.37 cfm per square foot of door area
Nonresidential doors	1 25 cfm per square foot of door area

Subp. 3 Thermal transmittance. Thermal transmittance of windows, doors, and skylight elements must be determined in accordance with item A or B

A Thermal performance (U–values) of fenestration products (windows, doors, and skylights) must be determined in accordance with the National Fenestration Rating Council (NFRC) standard 100–91, 100–97, or equivalent by an accredited, independent laboratory, and labeled and certified by the manufacturer

B When a manufacturer has not determined product U-value according to NFRC standards for a particular product line, the U-value shall be determined by assigning products a default U-value from the U-value default table Product features must be verifiable for the product to qualify for the default value associated with those features. Where the existence of a particular feature cannot be determined with reasonable certainty, the product must not receive credit for that feature. Where a composite of materials from two different product types are used, the product U-value must be the high U-value

(1) The U-value default table for wmdows, glass doors, and skylights is as

follows			
Frame/Glazing Features	Double Pane	Double Pane w/ Low–E Permanent Label on Glass	Triple Pane
,	U–value	U–value	U-value
Metal Wıth Thermal Break Operable Fıxed Glass door Skylıght	0 67 0 63 0 66 1 13	0 62 0 57 0 60 1 06	0 54 0 47 0.50 0.93
Metal-Clad Wood		, ,	
Operable	0.60	0 56	0 46
Fixed	0 58	0 52	0 41
Glass door	0.57	0.52	0.43
Skylight	088 '`	0`82	0 71

A constant a

fallow

MINNESOTA RULES 1998 7678.0600 MINNESOTA ENERGY CODE.

0.56 0.57 0.56 0 85	0 52 0.52 0.51 0 79	0.43 0.41 0 42 0 67
0.60		
		· -
value default ta	able for nonglazed d	loors is as follows.
» ۲ ر ^۰	U–V	alue
· , ·	0 6 0.3	· ,
• • •	Ŭ–V	alue
ls, els	Without Storm 0 54 0.39 0 40	With Storm 0.36 0.28 0 26
	0.57 0.56 0 85 0.60 value default ta	0.57 0.52 0.56 0.51 0 85 0 79 0.60 value default table for nonglazed d U-V 0 6 0.3 U-V Without Storm ls 0 54

4 7 7 1 Subp. 4. Solar heat gain coefficients. Solar heat gain coefficients of windows, glazed doors, and skylight elements must be determined according to this subpart

1

A The solar heat gain coefficient (SHGC) of glazed fenestration products (windows, glazed doors, and skylights) shall be determined according to the National Fenestration Rating Council (NFRC) standards by an accredited, independent laboratory, and labeled and certified by the manufacturer.

B. When a manufacturer has not determined product SHGC according to NFRC standards for a particular product line, the SHGC shall be determined by assigning such products a default SHGC from the SHGC default table. Product features must be verifiable for the product to qualify for the default value associated with those features. Where the existence of a particular feature cannot be determined with reasonable certainty, the product must not receive credit for that feature. Where a composite of materials from two different product types are used, the product shall be assigned the higher value.

The SHGC default table for windows, glazed doors, and skylights is as follows.

PRODUCT DESCR	IPTION		GLE GLAZE	D	
Metal–Framed. Operable F1xed	Clear 0 75 0.78	Bronze 0 64 0.67	Green 0.62 0.65	Gray 0.61 0.64	ł
Nonmetal Frames		,			
Operable	0.63	0 54	0.53	0 52	
Fixed	0 75	-0 64	0 62 ~	0.61	
21					
PRODUCT DESCR	IPTION	DO	UBLE GLAZE	ED	۰,
1		1	1		~,
Metal–Framed	Clear	DO Bronze 0 55	UBLE GLAZE Green 0.53	Gray	~, , /
1		Bronze	Green		
Metal–Framed	Clear 0 66	Bronze 0 55	Green 0.53	Gray 0 52	.,
Metal–Framed Operable Fixed Nonmetal Frames: ;	Clear 0 66	Bronze 0 55	Green 0.53 0.55	Gray 0 52 0 54	
Metal–Framed Operable Fixed	Clear 0 66	Bronze 0 55	Green 0.53 0.55	Gray 0 52	

Statutory Authority: MS s 216C.19

History: 23 SR 145

7678.0700 MECHANICAL EQUIPMENT EFFICIENCY REQUIREMENTS.

Subpart 1 HVAC equipment performance requirements. HVAC equipment must meet the minimum efficiency requirements specified in this part

A Standards and definitions for HVAC equipment mclude coefficient of performance, package terminal air conditioner, package terminal heat pump; room air conditioner, unitary cooling and heating equipment, unitary heat pump, water chilling package of absorption, water chilling package, centrifugal or rotary, and water chilling package, reciprocating, are located or referenced in Code of Federal Regulations, title 10, parts 430 and 435

B. Omissions of minimum performance requirements for equipment not listed in this part does not preclude use of such equipment.

C When multiple rating conditions or performance requirements are provided, the equipment must satisfy all stated requirements

Subp 2 Air cooled, electrically operated equipment. Unitary conditioners, heat pumps, and condensing units air cooled, electrically operated must meet the requirements of this subpart Deduct 0.2 from required EER and IPLV for units that have a heating section IPLV's are applicable to equipment with capacity modulation Minimum efficiencies have not been determined for condensing only units less than 135,000 Btu/h

UNITARY AIR CONDITIONERS AND AIR–COOLED, ELECTRICALLY OPERATED HEAT PUMPS

EQUIPMENT CATEGORY	EQUIPMENT SIZES AND MODE	RATING CONDITION	EFFICIENCY
Single Package	<65,000 Btu/h Cooling Capacity Cooling Mode	Seasonal Ratmg	97 SEER
Split System	<65,000 Btu/h Cooling Capacity Cooling Mode	-	10.0 SEER
Split System	≥65,000 and	Standard Rating	8 9 EER
and Single Package	<135,000 Btu/h Cooling Mode	(95°F db) Integrated Part Load Value (80°F	8 3 IPLV
Heat Pumps – Cooling	, Mode	db)	
Split System and Smgle Package	>135,000 Btu/h and <240,000 Btu/h		8 5 EER 7 5 IPLV
Phase Split System and Smgle Package	>240,000 Btu/h and <760,000 Btu/h		8 5 EER 7 5 IPLV
Phase Split System and Smgle Package	>760,000 Btu/h		8 2 EER 7 5 IPLV
Heat Pumps – Heatmg	, Mode		
Split System	<65,000 Btu/h Cooling Capacity Heating Mode	Seasonal Ratmg	6 8 HSPF
Single Package			6 6 HSPF

7678.0700 MINNESOTA ENERGY CODE

Split System and Single Package	≥65,000 and <135,000 Btu/h Cooling Capacity	H1gh Temperature Rat1ng (47°F db/ 43°F wb)	3 0 COP
	Heating Mode	Low Temperature Rating (17°F db/ 15°F wb)	2.0 COP
Split System and Single Package	≥135,000 and <240,000 Btu/h Cooling Capacity Heating Mode	High Temperature Ratmg (47°F db/ 43°F wb)	2 9 COP
		Low Temperature Rating (17°F db/ 15°F wb)	2 0 COP
Split System and Single Package	>240,000 and <760,000 Btu/h	High Temperature Rating (47°F db/ 43°F wb)	2 9 COP
, i		Low Temperature Rating (17°F db/ 15°F wb)	2 0 COP
Split System and Single Package	>760,000 Btu/h	High Temperature Ratmg (47°F db/ 43°F wb)	2 9 COP
, '		Low Temperature Ratmg (17°F db/ 15°F wb)	2.0 COP
Condensing Units	≥135,000 Btu/h	, v	11.0 IPLV 9 9 EER

Subp 3 Electrically operated, water and evaporatively cooled equipment. Unitary air conditioners, heat pumps, and condensing units electrically operated, evaporatively cooled must meet the requirements of this subpart. Deduct 0 2 from required EER and IPLV for units that have a heating section IPLV's are applicable to equipment with capacity modulation Minimum efficiencies have not been determined for condensing only units less than 135,000 Btu/h

ELECTRICALLY OPERATED, EVAPORATIVELY COOLED EQUIPMENT

EQUIPMENT	EQUIPMENT SIZES AND MODE	RATING CONDITION	EFFICIENCY
Split System and Single Package	All	For EER. Indoor Temperature (80°F db/67°F wb) Outdoor Temperature (95°F db/75°F wb) For IPLV (80°F db/67°F wb)	
Split System	<65,000 Btu/h		9 3 EER

Split System<65,000 Btu/h</th>9 3 EERand SingleCooling Capacity8.4 IPLVPackage8.4 IPLV

193

MINNESOTA ENERGY CODE 7678.0700

Split System and Single Package	<135,000 Btu/h Cooling Capacity	ч т _а ч	10 5 EER 9.7 IPLV
Split System and Smgle Package	≥135,000 and <240,000 Btu/h Cooling Capacity	, ,	9 6 EER 9.0 IPLV
Split System and Single Package	≥240,000 and <760,000 Btu/h Cooling Capacity		9 6 EER 9 0 IPLV
Split System and Single Package	>760,000 Btu/h	x	9.6 EER 9 0 IPLV
Condensing Units	≥135,000 Btu/h		12 9 EER 12 9 IPLV

Subp 4 Water-cooled equipment. Water-cooled air conditioners, heat pumps, and condensing units must meet the requirements of this subpart Minnesota Statutes, section 103G 271, subdivision 5, prohibits once-through systems

WATER-COOLED EQUIPMENT

EQUIPMENT	EQUIPMENT SIZES AND MODE	RATING CONDITION	EFFICIENCY
Water Source Heat Pumps	<65,000 Btu/h Cooling Capacity	Standard Rating Indoor Aır (80°F db/65°F wb) and Entering Water (85°F)	9 3 EER
	· · ·	Low Temperature Rating Indoor Air (80°F db/67°F wb) and Entering Water (75°F)	10 2 EER
	≥65,000 and <135,000 Btu/h Cooling Capacity	Standard Rating Indoor Air (80°F db/67°F wb) and Entering Water (85°F)	10 5 EER
		Entering Water (75°F)	11.00 EER
Groundwater Cooled Heat Puinps	<135,000 Btu/h Cooling Capacıty	Standard Rating Entering Water (70°F)	11 0 EER
,	x	Low Temperature Rating Entering Water (50°F)	11.5 EER

7678.0700 MINNESOTA ENERGY CODE

Subp 5 **Packaged terminal equipment.** Packaged terminal air conditioners and heat pumps air cooled, electrically operated must meet the requirements of this subpart Equipment must comply with all efficiencies when multiple efficiencies are indicated "Cap" means the rated capacity in Btu/h If the equipment capacity is less than 7,000 Btu/h, use 7,000 Btu/h m the calculation If the equipment capacity is greater than 15,000 Btu/h, use 15,000 Btu/h in the calculation

PACKAGED TERMINAL EQUIPMENT

EQUIPMENT	EQUIPMENT SIZES AND MODE	RATING CONDITION	EFFICIENCY
PTAC AND PTAC Heat Pumps	All Capacities Cooling Mode	Standard Rating (95°F db)	10.0 – (0 16 x Cap /1,000) EER
		Low Temperature Rating (82°F db)	12 2 – (0 20 x Cap /1,000) EER
PTAC Heat Pumps	All Capacities Heating Mode	Standard Rating (47°F db/43°F wb)	2.9 – (0.026 x Cap./1,000 COP

Subp 6 Room equipment. Room air conditioners and room air conditioner heat pumps must meet the requirements of this subpart Equipment must comply with all efficiencies when multiple efficiencies are indicated

ROOM EQUIPMENT

EQUIPMENT	EQUIPMENT SIZES & MODE	EFFICIENÇY
Without Reverse	<6,000 Btu/h	8.0 EER
Cycle and with Louvered Sides	≥6,000 and <8,000 Btu/h	8 5 EER
	≥8,000 and <14,000 Btu/h	90 EER
	≥14,000 and <20,000 Btu/h	8.8 EER
	≥20,000 Btu/h	8.2 EER
Without Reverse Cycle and without Louvered Sides	<6,000 Btu/h	8.0 EER
	≥6,000 and <20,000 Btu/h	8 5 EER
	≥20,000 Btu/h	8.2 EER
With Reverse Cycle and With Louvered Sides – All Capacities		8.5 EER
With Reverse Cycle and Withou	t Louvered Sides –	8 0 EER

All Capacities

Subp. 7 Water source equipment. Water source, groundwater source, and ground source heat pumps electrically operated must meet the requirements of this subpart Minnesota Statutes, section 103G.271, subdivision 5, prohibits once-through systems

MINNESOTA ENERGY CODE 7678.0700

WATER SOURCE EQUIPMENT

EQUIPMENT	EQUIPMENT SIZES AND MODE	RATING CONDITION	EFFICIENCY
Water Source	<135,000 Btu/h	Standard Rating Entering Water (70°F) Entering	3 8 COP
		Water (75°F)	3 9 COP
Groundwater Source Heat Pumps	<135,000 Btu/h	High Temperature Rating Entering Water (70°F)	3 4 COP
		Low Temperature Rating Entering Water (50°F)	3.0 COP
Ground Source Heat Pumps	<135,000 Btu/h	High Temperature Rating Entering Water (41°)	2 70 COP
		Low Temperature Rating Entering Water (32°)	2 50 COP

Subp 8. Gas-fired and oil-fired equipment. Gas-fired and oil-fired boilers, furnaces, and umt heaters and combination furnace/air conditioner units must meet the requirements of this subpart Minimum and maximum ratings must be as provided for and allowed by the equipment controls

GAS-FIRED AND OIL-FIRED EQUIPMENT

EQUIPMENT	EQUIPMENT SIZES AND MODE	RATING CONDITION	MINIMUM EFFICIENCY
Gas–fired boılers	<300,000 Btu/h	Hot water	80% AFUE
bollers		Steam	75% AFUE
	>300,000	Both maximum and minimum rated capacity	80% Ec* or 80% Et**
Gas-fired furnaces	<225,000 Btu/h	Seasonal rating	78% AFUE
	>225,000 Btu/h	Maximum rated capacity	80% Et**
	a	Minimum rated capacity	78% Et
Gas-fired duct	All sizes	Maximum rated capacity	78% Et
furnaces		Minimum rated capacity	75% Et

195

,

MINNESOTA RULES 1998 7678.0700 MINNESOTA ENERGY CODE

Gas-fired unit heaters	All sizes	Max1mum rated capacity	78% Et
licators		Mınımum rated capacıty	74% Et
Oıl–fıred furnaces	<225,000 Btu/h	Seasonal rating	78% AFUE
Turnaces	>225,000 Btu/h	Both maximum and minimum rated capacity	81% Et×*
Oil-fired	<300,000 Btu/h	Seasonal rating	80% AFUE
boners	>300,000 Btu/h	Both maximum and minimum rated capacity	83% Ec*
Oıl–fıred boılers (resıdual)	>300,000 Btu/h	Both maximum and minimum rated capacity	83% Ec
Oıl–fıred unıt heaters	All sizes	Both maximum and minimum rated capacity	81% Et

*Ec = Efficiency, combustion

**Et = Efficiency, thermal

Subp 9' **Mobile home equipment.** Mobile home furnaces, steam boilers, and direct heating equipment must meet the requirements of this subpart.

EQUIPMENT	MOBILE HOME EQUIPMENT EQUIPMENT SIZES	EFFICIENCY (AFUE)
Mobile Home Furnaces	,	75 percent
Gas Steam Boilers		75 percent
Gas Fueled Direct Heatmg Equipment Vented Wall Furnaces	<42,000 Btu/h	73 percent
Fan Type	≥42,000 Btu/h	74 percent
Vented Wall	<10,000 Btu/h	59 percent
Furnaces	≥10,000 and <12,000 Btu/h	60 percent
Gravity Type	≥12,000 and <15,000 Btu/h ≥15,000 and <19,000 Btu/h ≥19,000 and <27,000 Btu/h ≥27,000 and <46,000 Btu/h ≥46,000 Btu/h	61 percent 62 percent 63 percent 64 percent 65 percent
Vented Floor Furnaces	<37,000 Btu/h ≥37,000 Btu/h	56 percent 57 percent
Vented Room Heaters	<18,000 Btu/h ≥18,000 and <20,000 Btu/h	57 percent 58 percent

196

MINNESOTA RULES 1998 MINNESOTA ENERGY CODE 7678.0800.

1 41 KW/Ton 1 30 KW/Ton

, -

6 1 1

≥20,000 and <27,000 Btu/h	63 percent
≥27,000 and <46,000 Btu/h	64 percent
≥46,000 Btu/h	65 percent
and the product of the	

Subp 10 Water chilling packages.

A Double effect, heat operated water chilling packages must be used in lieu of single effect equipment. e , s i i i it

EXCEPTION Single effect equipment may be used when all energy input is from low temperature waste heat or renewable energy sources.

B. Water chilling packages, water and air cooled, electrically operated must meet the requirements of this subpart

ELECTRICAL	LY OP	ERA	TED WATER CHILLER P	ACKAGES	, ,
WATER-COOLED	1.12	,	CFC of a	NON-CFC	, ₁
Centrifugal Helical–rotary (screw) Reciprocating or scroll	• 1	,	0 63 KW/Ton 0 75 KW/Ton 0 93 KW/To	0 73 KW/Ton 0.80 KW/Ton on) , , , ,
AIR-COOLED (any ty	pe)			17 N	

AIR-COOLED (any type)

11 ≥150 Ton <150 Ton

Statutory Authority: MS s 216C.19

History: 23 SR 145

7678.0800 SERVICE WATER HEATING EQUIPMENT EFFICIENCY REQUIRE-MENTS.

Subpart 1 Scope. Service water heating equipment must meet the minimum efficiency requirements in this part.

Subp. 2 Standards. Standards for service water heating equipment are located in Code of Federal Regulations, title 10, parts 430 and 435

Subp. 3 Efficiency. Efficiency requirements for water heaters regulated by the National Appliance Energy Conservation Act.

EFFICIENCY REQUIREMENTS FOR WATER HEATERS REGULATED BY THE NATIONAL APPLIANCE ENERGY CONSERVATION ACT Fuel Type (Size) Energy Factor

Fuel Type (Size)	Energy Factor
Storage gas (<75,000 Btu/h)	$0.62 - (0\ 0019\ x\ V_v)$
Instantaneous Gas (<200,000 Btu/h)	$0.62 - (0.0019 \text{ x V}_{v})$
Storage oil (<105,000 Btu/h)	$0.59 - (0.0019 \text{ x V}_{v})$
Instantaneous oil (<210,000 Btu/h)	$0.59 - (0\ 0019\ x\ V_v)$
Electric (<12 kw)	$0.93 - (0.00132 \text{ x V}_v)$
Pool heater (all sizes)	Thermal efficiency > 78 percent

Where. V_v = rated storage volume in gallons

MINNESOTA RULES 1998 7678.0800 MINNESOTA ENERGY CODE

Subp 4 Other water heaters. Efficiency requirements for all other water heaters

EFFICIENCY REQUIREMENTS FOR ALL OTHER WATER HEATERS Input Input to Minimum Maximum Standby Pating Volume Thermal Loss (% hour)

Fuel Type	Input Ratıng or Volume	Input to Volume Ratio (Btu/gal)	Minimum Thermal Efficiency	Maxımum Standby Loss (% hour)
Electric	>12 KW	(Dtu/gal)	1	$0.30 + 27 - V_t$.
Gas/O1l	≤155,000 Btu/h		78 percent	$1 \ 30 + 114 - V_t$
Gas/O1l	, <i>'</i>	,		$1 3 + 95 - V_t$
Gas/O1l	≥10 gal	>4,000	80 percent	$2.3 + 67 - V_t$
Gas/Oıl	<10 gal	<4,000	78 percent	ć
Gas/Oıl	All	>4,000	77 percent	$2 3 + 67 - V_t$
Unfired storage tanks	All			≤6 5 Btu/hr/sq ft based on 80°F water–to– aır temperature dıfference

Where V_t = the measured storage volume in gallons

Statutory Authority: MS s 216C 19

History: 23 SR 145

7678.0900 EFFECTIVE DATE.

This chapter is effective July 20, 1999

Statutory Authority: MS s 216C.19

History: 23 SR 145

NOTE Two parts were originally adopted at 23 SR 145 as 7678 0800 This part was renumbered editorially

(