CHAPTER 4731 DEPARTMENT OF HEALTH RADIATION SAFETY

4731 0100	DEFINITIONS	4731 4140	RADIOGRAPHER TRAINING
4731 0200	GENERAL APPLICATIONS	4731 4403	SPECIFIC LICENSE, MEDICAL USE OF
4731 0280	DELIBERATE MISCONDUCT		RADIOACTIVE MATERIALS
4731 0355	RECIPROCITY	4731 4410	SUPPLIERS OF MEDICAL USE SEALED SOURCES
4731 0400	SCOPE, ENFORCEMENT NOTICE	4721 4411	OR DEVICES
4731 0401	REQUIREMENT FOR LICENSE	4731 4411 4731 4412	RADIATION SAFETY OFFICER TRAINING
4731 0402	TRANSPORTATION OF LICENSED MATERIAL	4731 4412	AUTHORIZED MEDICAL PHYSICIST TRAINING 'AUTHORIZED NUCLEAR PHARMACIST
4731 0403	SPECIFIC EXEMPTIONS	4/31 4413	TRAINING
4731 0406	GENERAL LICENSE, NRC-APPROVED PACKAGE	4731 4414	TRAINING, EXPERIENCED RADIATION SAFETY
4731 0408	GENERAL LICENSE, DOT SPECIFICATION CONTAINER		OFFICER, TELETHERAPY OR MEDICAL PHYSICIST, AUTHORIZED USER, AND NUCLEAR
4731 0409	GENERAL LICENSE, FOREIGN-APPROVED PACKAGE	4731 4423	PHARMACIST AUTHORIZATION FOR CALIBRATION,
4731 0410	GENERAL LICENSE, FISSILE MATERIAL	7,00	TRANSMISSION, AND REFERENCE USE
4731 0411	GENERAL LICENSE, PLUTONIUM-BERYLLIUM SPECIAL FORM MATERIAL	4731 4427	RELEASE OF INDIVIDUALS CONTAINING UNSEALED RADIOACTIVE MATERIAL OR
4731 0415	ROUTINE DETERMINATIONS	477. 4400	IMPLANTS
4731 0416	AIR TRANSPORT OF PLUTONIUM	4731 4432	UNSEALED RADIOACTIVE MATERIAL, UPTAKE, DILUTION, AND EXCRETION STUDIES,
4731 0419	ADVANCE NOTIFICATION OF SHIPMENT OF		WRITTEN DIRECTIVE NOT REQUIRED
47701 0491	IRRADIATED REACTOR FUEL AND NUCLEAR WASTE	4731 4433	UPTAKE, DILUTION, AND EXCRETION STUDIES, TRAINING
4731 0421	QUALITY ASSURANCE ORGANIZATION	4731 4434	UNSEALED RADIOACTIVE MATERIAL,
4731 0422 4731 0423	A1 AND A2 VALUES FOR RADIONUCLIDES DETERMINATION OF A1 AND A2		IMAGING AND LOCALIZATION STUDIES, WRITTEN DIRECTIVE NOT REQUIRED
4731 0455	QUALITY ASSURANCE FOR TRANSPORTATION PACKAGES	4731 443 6	IMAGING AND LOCALIZATION STUDIES, TRAINING
4731 0610	AUTHORIZED USE OF SPECIAL NUCLEAR MATERIAL	4731 4443	UNSEALED RADIOACTIVE MATERIAL, WRITTEN DIRECTIVE REQUIRED, TRAINING
4731 0780	FINANCIAL ASSURANCE AND RECORD KEEPING FOR DECOMMISSIONING	4731 4444	ORAL ADMINISTRATION OF SODIUM IODIDE I-131, QUANTITIES LESS THAN OR EQUAL TO 33
4731 1010	POSTING WORKER NOTICES		MILLICURIES (1 22 GBq), WRITTEN DIRECTIVE
4731 2600	REPORTS, THEFT OR LOSS OF LICENSED MATERIAL	4731 4445	REQUIRED, TRAINING ORAL ADMINISTRATION OF SODIUM IODIDE,
4731 2800	QUANTITIES OF LICENSED MATERIAL REQUIRING LABELING	1,51 11.15	QUANTITIES GREATER THAN 33 MILLICURIES (1 22 GBq), WRITTEN DIRECTIVE REQUIRED,
4731 3075	TERMS AND CONDITIONS OF LICENSES	4721 4446	TRAINING
4731 3080	FINANCIAL ASSURANCE AND RECORD KEEPING FOR DECOMMISSIONING	4731 4446	PARENTERAL ADMINISTRATION OF UNSEALED RADIOACTIVE MATERIAL, WRITTEN DIRECTIVE REQUIRED, TRAINING
4731 3215	GENERAL LICENSE, DETECTING, MEASURING,	4731 4458	MANUAL BRACHYTHERAPY TRAINING
4521 2220	GAUGING, CONTROLLING, AND OTHER DEVICES	4731 4459	OPHTHALMIC USE OF STRONTIUM-90, TRAINING
4731 3330	SPECIFIC LICENSE, CERTAIN DEVICES CONTAINING RADIOACTIVE MATERIALS, MANUFACTURE OR INITIAL TRANSFER	47 31 44 6 1	USE OF SEALED SOURCES FOR DIAGNOSIS, TRAINING
4731 3395	SPECIFIC LICENSE, RADIOACTIVE DRUGS FOR MEDICAL USE, MANUFACTURE, PREPARATION, OR TRANSFER	4731 4479	REMOTE AFTERLOADER UNITS, TELETHERAPY UNITS, AND GAMMA STEREOTACTIC RADIOSURGERY UNITS, TRAINING
4731 3400	SPECIFIC LICENSE, SOURCES OR DEVICES FOR MEDICAL USE, MANUFACTURE AND DISTRIBUTION	4731 7050	LABELS, SECURITY, AND TRANSPORTATION PRECAUTIONS
4731 4030	PERFORMANCE REQUIREMENTS, INDUSTRIAL RADIOGRAPHY EQUIPMENT		
4731 4110	LABELING, PACKAGING, SECURITY		

4731.0100 DEFINITIONS.

[For text of subps 1 to 21, see MR]

- Subp 22. Authorized medical physicist. "Authorized medical physicist" means an individual who
 - A meets the requirements in parts 4731 4412 and 4731 4415; or
 - B. 1s identified as an authorized medical physicist or teletherapy physicist on:

[For text of subitems (1) to (3), see MR]

(4) a permit issued by an NRC master material license broad scope medical use permittee.

Subp 23 **Authorized nuclear pharmacist.** "Authorized nuclear pharmacist" means a pharmacist who

A meets the requirements in parts 4731 4413 and 4731 4415,

[For text of items B to D, see M.R.]

Subp 24 Authorized user. "Authorized user" means a licensed practitioner of the healing arts who

A meets the requirements in part 4731 4415 and in parts 4731 4433, 4731 4436, 4731 4443 to 4731 4445, 4731 4458, 4731 4461, or 4731,4479, or

- B. 1s identified as an authorized user on:
- (1) an NRC or agreement state license that authorizes the medical use of radioactive material,
- (2) a permit issued by an NRC master material licensee that is authorized to permit the medical use of radioactive material,
- (3) a permit issued by an NRC or agreement state specific licensee of broad scope that is authorized to permit the medical use of radioactive material, or
- (4) a permit issued by an NRC master material license broad scope permittee that is authorized to permit the medical use of radioactive material

Subp 33a Certificate holder. "Certificate holder" means a person who has been issued a certificate of compliance or other package approval by the NRC.

Subp 33b Certificate of compliance. "Certificate of compliance" means the certificate issued by the NRC under Code of Federal Regulations, title 10, part 71, subpart D, which approves the design of a package for transportation of radioactive material

Subp 43a Consignment. "Consignment" means each shipment of a package or groups of packages or load of radioactive material offered by a shipper for transport.

Subp. 44a. Containment system. "Containment system" means the assembly of components of the packaging intended to retain the radioactive material during transport.

Subp 49a. Conveyance. "Conveyance" means

- A for transport by public highway or rail, any transport vehicle or large freight contamer:
- B for transport by water, any vessel or any hold, compartment, or defined deck area of a vessel, including any transport vehicle on board the vessel, and
 - C for transport by air, any aircraft

Subp 50a **Criticality safety index or CSI.** "Criticality safety index" or "CSI" means the dimensionless number, rounded up to the next tenth, assigned to and placed on the label of a fissile material package, to designate the degree of control of accumulation of packages containing fissile material during transportation. Determination of the criticality safety index is described in parts 4731.0410 and 4731 0411 and Code of Federal Regulations, title 10, section 71 59.

[For text of subps 51 to 59, see M'R]

Subp 59a **Deuterium.** "Deuterium" means, for purposes of parts 4731 0403, subpart 4, and 4731.0410, deuterium and any deuterium compounds, including heavy water, in which the ratio of deuterium atoms to hydrogen atoms exceeds 1 5000

[For text of subps 60 to 83, see M.R.]

4731.0100 RADIATION SAFETY

Subp 84 **Fissile material.** "Fissile material" means the radionuclides plutonium-239, plutonium-241, uramum-233, uranium-235, or any combination of these radionuclides Fissile material means the fissile nuclides themselves, not material containing fissile nuclides Unirradiated natural uranium and depleted uranium and natural uranium or depleted uranium, that has been irradiated in thermal reactors only, are not included in this definition. Certain exclusions from fissile material controls are provided in parts 4731.0400 to 4731.0455

[For text of subps 85 to 90, see M R.]

Subp. 90a. **Graphite.** "Graphite" means graphite with a boron equivalent content less than five parts per million and density greater than 1 5 grams per cubic centimeter

[For text of subps 91 to 128, see MR.]

- Subp 129 Low specific activity material or LSA. "Low specific activity material" or "LSA" means radioactive material with hmited specific activity which is nonfissile or is excepted under part 4731 0403, subpart 3, and that satisfies the descriptions and limits in subpart 130, 131, or 132 Shielding materials surrounding the LSA material may not be considered in determining the estimated average specific activity of the package contents. LSA material must be in group II, group III.
- Subp. 130 Low specific activity material group I. "Low specific activity material group I" means:
- A uranium and thorium ores, concentrates of uranium and thorium ores, and other ores containing naturally occurring radioactive radionuchdes which are not intended to be processed for the use of these radionuclides,
- B. solid unirradiated natural uranium or depleted uranium or natural thorium or their solid or liquid compounds or mixtures,
 - C. radioactive material for which the A, value is unlimited, or
- D other radioactive material in which the activity is distributed throughout and the estimated average specific activity does not exceed 30 times the value for exempt material activity concentration determined according to part 4731 0423
- Subp 131 Low specific activity material group II. "Low specific activity material group II" means:
 - A. water with tritium concentration up to 20 0 Ci/liter (0.8 TBg/liter), or
- B other material in which the activity is distributed throughout and the average specific activity does not exceed 10^{-4} A₂/g for solids and gases or 10^{-5} A₂/g for liquids
- Subp 132 Low specific activity material group III. "Low specific activity material group III" means solids, such as consolidated wastes and activated materials, excluding powders, that satisfy the requirements in Code of Federal Regulations, title 10, section 71 77, in which
- A. the radioactive material is distributed throughout a solid or a collection of solid objects or is essentially uniformly distributed in a solid compact binding agent such as concrete, bitumen, or ceramic;
- B the radioactive material is relatively insoluble or it is intrinsically contained in a relatively insoluble material, so that even under loss of packaging, the loss of radioactive material per package by leaching, when placed in water for seven days, would not exceed 0.1 $\rm A_2$, and
- C the estimated average specific activity of the solid does not exceed 2 x 10^{-3} A₂/g

[For text of subps 133 to 158, see MR.]

- Subp 159. **Package.** "Package" means the packaging together with its radioactive contents as presented for transport
- A "Fissile material package" or "Type AF package, Type BF package, Type B(U)F package, or Type B(M)F package" means a fissile material packaging together with its fissile material contents
- B "Type A package" means a Type A packaging together with its radioactive contents. A Type A package is defined and must comply with DOT regulations in Code of Federal Regulations, title 49, part 173
- C "Type B package" means a Type B packaging together with its radioactive contents. On approval, a Type B package design is designated by the NRC as B(U) unless the package has a maximum normal operating pressure of more than 100 lb/in² (700 kPascal) gauge or a pressure relief device that would allow the release of radioactive material to the environment under the tests specified in Code of Federal Regulations, title 10, section 71.73, for hypothetical accident conditions, in which case it will receive a designation B(M). B(U) refers to the need for unilateral approval of international shipments. B(M) refers to the need for multilateral approval of international shipments. There is no distinction made in how packages with these designations may be used in domestic transportation. To determine their distinction for international transportation, see DOT regulations in Code of Federal Regulations, title 49, part 173. A Type B package approved before September 6, 1983, was designated only as Type B. Limitations on its use are specified in Code of Federal Regulations, title 10, section 71.19

[For text of subps 160 to 173, see MR]

Subp. 174 **Preceptor.** "Preceptor," means an individual who provides, directs, or verifies the training and experience required for an individual to become an authorized user, an authorized medical physicist, an authorized nuclear pharmacist, or a radiation safety officer

[For text of subps 175 to 192, see MR]

- Subp 193 Radiation safety officer or RSO: "Radiation safety officer" or "RSO" is an individual who
- A has the training, knowledge, authority, and responsibility to apply appropriate radiation protection regulations according to part 4731.4130 on behalf of the licensee, or
- B meets the requirements in part 4731 4411, subpart 1, item A, or parts 4731 4411, subpart 1, item C, and 4731 4415 or is identified as a radiation safety officer on.
- (1) a specific medical use license issued by the commissioner, the NRC, or an agreement state, or
 - (2) a medical use permit issued by an NRC master material licensee

[For text of subps 194 to 223, see MR]

Subp 224 **Special form radioactive material.** "Special form radioactive material" means radioactive material that satisfies the following conditions

[For text of item A, see M R]

B the piece or capsule has at least one dimension not less than 0.2 inches (5 mm), and

[For text of item C, see MR]

[For text of subps 225 to 234, see MR]

Subp 235 **Surface contaminated object or SCO.** "Surface contaminated object" or "SCO" means a solid object that is not itself classed as radioactive material, but that has radioactive material distributed on any of its surfaces SCO must be in one of two groups, with surface activity not exceeding the following limits.

A SCO-I is a solid object on which

4731.0100 RADIATION SAFETY

[For text of subitems (1) and (2), see MR]

- (3) the nonfixed contamination plus the fixed contamination on the inaccessible surface averaged over 300 cm², or the area of the surface if less than 300 cm², does not exceed.
- (a) 1.0 $\mu\text{C1/cm}^2$ (4 x 10^4 Bq/cm 2) for beta and gamma and low toxicity alpha emitters, or
 - (b) $0.1 \,\mu\text{Ct/cm}^2$ (4 x $10^3 \,\text{Bq/cm}^2$) for all other alpha emitters; and [For text of item B, see M R.]

[For text of subps 236 to 245, see MR]

Subp 246 **Transport index.** "Transport index" means the dimensionless number, rounded up to the next tenth, placed on the label of a package to designate the degree of control to be exercised by the carrier during transportation. The transport mdex is the number determined by multiplying the maximum radiation level in millisievert (mSv) per hour at 3 3 feet (one meter) from the external surface of the package by 100 (equivalent to the maximum radiation level in millirem per hour at 3.3 feet (one meter)).

[For text of subps 247 to 253, see M.R.]

Subp 253a Unirradiated uranium. "Unirradiated uranium" means uranium containing not more than 2×10^3 Bq of plutonium per gram of uranium-235, not more than 9×10^6 Bq of fission products per gram of uranium-235, and not more than 5×10^3 gram of uranium-236 per gram of uranium-235.

[For text of subps 254 to 269, see M.R.]

Statutory Authority: MS s 144 1202, 144 1203

History: 32 SR 831

4731.0200 GENERAL APPLICATIONS.

[For text of subps 1 to 3, see MR]

Subp. 4 **Submissions.** Except as otherwise specified in this chapter, all communications and reports under this chapter must be addressed to or delivered in person to Radioactive Materials Unit, Minnesota Department of Health, 625 Robert Street N, PO Box 64975, St. Paul, MN 55164-0975

Statutory Authority: MS s 144 1202, 144 1203

History: 32 SR 831

4731.0280 DELIBERATE MISCONDUCT.

Subpart 1 Applicability. This part applies to

- A a licensee, registrant, industrial radiography certificate holder, or quality assurance program approval holder,
- B an applicant for a license or registration, applicant for industrial radiography certificate, or applicant for quality assurance program approval,
- C a contractor, including a supplier or consultant, or subcontractor to any person identified in this subpart, or
 - D an employee of any person identified in this subpart
- Subp 2 **Prohibition.** A person identified in subpart 1 who knowingly provides to any entity listed in subpart 1, any components, equipment, materials, or other goods or services that relate to a licensee's, industrial radiography certificate holder's, quality assurance program approval holder's, registrant's, or applicant's activities in this chapter may not.
- A engage in deliberate misconduct that causes or would have caused, if not detected, any entity listed in subpart 1 to be in violation of a rule, an order, a regulation; or a term, condition, or limitation of a license, certificate, approval, or registration issued by the commissioner; or

- B deliberately submit to the commissioner, a licensee, a registrant, an industrial radiography certificate holder, a quality assurance program approval holder, an applicant for a license, certificate, or quality assurance program approval, or a licensee's, registrant's, or applicant's contractor or subcontractor, any information that the person submitting the mformation knows to be incomplete or inaccurate in some respect material to the commissioner.
- Subp 3 **Enforcement.** A person who violates this part may be subject to enforcement action under part 4731 0260.
- Subp 4 **Definition.** For purposes of this part, deliberate misconduct by a person means an intentional act or omission that the person knows
- A would cause a licensee, registrant, or applicant to be in violation of a rule, an order, or a term, condition, or limitation of a license issued by the commissioner; or
- B. constitutes a violation of a requirement, procedure, instruction, contract, purchase order, or policy of a licensee, registrant, applicant, contractor, or subcontractor

Statutory Authority: MS s 144.1202, 144 1203

History: 32 SR 831

4731.0355 RECIPROCITY.

Subpart 1. Application; recognition.

A Applications for reciprocal recognition of licenses issued by the NRC or other agreement states may be made by completing a report of proposed activity reciprocity form prescribed by the commissioner. The form may be obtained by contacting the Radioactive Materials Unit, Minnesota Department of Health, 625 Robert Street N, PO. Box 64975, St Paul, MN 55164-0975

[For text of item B, see M R]
[For text of subps 2 to 4, see M.R]

Statutory Authority: MS s 144 1202, 144 1203

History: 32 SR 831

4731.0400 SCOPE; ENFORCEMENT NOTICE.

- Subpart 1 Scope. Parts 4731 0400 to 4731 0455 establish requirements for the packaging, preparation for shipment, and transportation of licensed material
- Subp 2. **Application of other law.** The packaging and transport of licensed material are subject to this chapter, Code of Federal Regulations, title 10, parts 21, 70, and 73, and the regulations of other agencies, such as the NRC, DOT, and United States Postal Service, having jurisdiction over means of transport. The requirements of parts 4731 0400 to 4731 0455 are in addition to, and not in substitution for, other requirements

Subp 3. Applicability.

- A Parts 4731.0400 to 4731 0455 apply to any licensee authorized by a specific or general license issued by the commissioner to receive, possess, use, or transfer licensed material, if the hierarchical to a carrier for transport, transports the material outside the site of usage as specified in an NRC or agreement state license, or transports that material on public highways Parts 4731.0400 to 4731 0455 do not authorize possession of licensed material
- B Parts 4731 0400 to 4731 0455 apply to any person required to obtain a certificate of compliance if the person delivers radioactive material to a common or contract carrier for transport or transports the material outside the confines of the person's plant or other authorized place of use
- Subp 4 Enforcement notice. This part is notice to all persons who knowingly provide to any licensee; radiographer certificate holder, quality assurance program approval

holder; applicant for a license, radiographer certificate, or quality assurance program approval; or contractor or subcontractor of any of them components, equipment, materials, or other goods or services, that relate to a licensee's, certificate holder's, quality assurance program approval holder's, or applicant's activities subject to parts 4731.0400 to 4731.0455, that they may be individually subject to the commissioner's enforcement action for violation of part 4731 0280.

Statutory Authority: MS s 144.1202; 144 1203

History: 32 SR 831

4731.0401 REQUIREMENT FOR LICENSE.

No licensee shall deliver licensed material to a carrier for transport or transport heensed material, except as authorized in a general license or a specific license issued by the commissioner or as exempted under parts 4731.0400 to 4731 0455

Statutory Authority: MS s 144.1202; 144.1203

History: 32 SR 831

4731.0402 TRANSPORTATION OF LICENSED MATERIAL.

Subpart 1 DOT regulations.

- A A licensee who transports licensed material outside of the site of usage, as specified in a license issued by the NRC or an agreement state, or where transport is on public highways or a licensee who delivers licensed material to a carrier for transport must comply with the applicable DOT regulations in Code of Federal Regulations, title 49, parts 107, 171 to 180, and 390 to 397, appropriate to the mode of transport.
 - B. A licensee must particularly note DOT regulations in the following areas
- (1) packaging, Code of Federal Regulations, title 49, part 173, subparts A, B, and I,
- (2) marking and labeling, Code of Federal Regulations, title 49, part 172, subparts D and E, sections 172 400 to 172 407 and 172 436 to 172 441;

[For text of subitems (3) to (5), see MR.]

- (6) hazardous material employee training, Code of Federal Regulations, title 49, part 172, subpart H,
- (7) security plans, Code of Federal Regulations, title 49, part 172, subpart I, and
- (8) hazardous material shipper and carrier registration, Code of Federal Regulations, title 49, part 107, subpart G

[For text of item C, see M.R]

[For text of subp 2, see M.R.]

Statutory Authority: MS s 144 1202; 144 1203

History: 32 SR 831

4731.0403 SPECIFIC EXEMPTIONS.

Subpart 1. **Physicians.** A physician licensed by a state to dispense drugs in the practice of medicine is exempt from part 4731 0402 with respect to transport by the physician of licensed material for use in the practice of medicine. A physician operating under this exemption must be licensed under parts 4731 4400 to 4731 4527 or equivalent regulations of the NRC or an agreement state.

Subp 1a **Grounds.** On application of any interested person or on the commissioner's own initiative, the commissioner may grant any exemption from parts 4731 0400 to 4731 0455 that the commissioner determines is authorized by law and will not endanger life or property nor the common defense and security.

- Subp 2. **Low-level materials.** A licensee is exempt from the requirements of parts 4731 0400 to 4731 0455 with respect to shipment or carriage of a package of the following low-level material
- A. natural material and ores containing naturally occurring radionuclides that are not intended to be processed for use of these radionuclides, provided the activity concentration of the material does not exceed ten times the values specified in part 4731 0422, subpart 3, and
- B materials for which the activity concentration is not greater than the activity concentration values specified in part 4731 0422, subpart 3, or for which the consignment activity is not greater than the limit for an exempt consignment under part 4731 0422, subpart 3
- Subp. 3 Exemption from classification as fissile material. Fissile material meeting at least one of the requirements in items A to F is exempt from classification as fissile material and from the fissile material package standards of Code of Federal Regulations, title 10, sections 71 55 and 71 59, but is subject to all other requirements of this chapter, except as noted.
 - A an individual package containing two grams or less of fissile material,
- B individual or bulk packaging containing 15 grams or less of fissile material, provided the package has at least 200 grams of solid nonfissile material for every gram of fissile material. Lead, beryllium, graphite, and hydrogenous material enriched in deuterium may be present in the package but must not be included in determining the required mass for solid nonfissile material,
- C low concentrations of solid fissile material commingled with solid nonfissile material, provided that:
- (1) there is at least 2,000 grams of solid nonfissile material for every gram of fissile material. Lead, beryllium, graphite, and hydrogenous material enriched in deuterium may be present in the package but may not be included in determining the required mass of solid nonfissile material; and
- (2) there is no more than 180 grams of fissile material distributed within 360 kilograms of contiguous nonfissile material. Lead, beryllium, graphite, and hydrogenous material enriched in deuterium may be present in the package but may not be included in determining the required mass of solid nonfissile material,
- D uranium enriched in uranium-235 to a maximum of one percent by weight, and with total plutonium and uranium-233 content of up to one percent of the mass of uranium-235, provided that the mass of any beryllium, graphite, and hydrogenous material enriched in deuterium constitutes less than five percent of the uranium mass;
- E liquid solutions of uranyl nitrate enriched in uranium-235 to a maximum of two percent by mass, with a total plutonium and uranium-233 content not exceeding 0 002 percent of the mass of uranium, and with a minimum nitrogen to uranium atomic ratio (N/U) of two. The material must be contained in at least a DOT Type A package; or
- F packages containing, individually, a total plutonium mass of not more than 1,000 grams, of which not more than 20 percent by mass may consist of plutonium-239, plutonium-241, or any combination of these radionuclides

Statutory Authority: MS s 144.1202, 144 1203

History: 32 SR 831

4731.0405 [Repealed, 32 SR 831]

4731.0406 GENERAL LICENSE; NRC-APPROVED PACKAGE.

[For text of subpart 1, see MR]

Subp 2 **Approved quality assurance program.** The general license issued under subpart 1 applies only to a licensee who has a quality assurance program approved by the NRC as complying with Code of Federal Regulations, title 10, part 71, subpart H

Subp 3 Compliance with conditions.

A The general license issued under subpart 1 applies only to a licensee who:

[For text of subitem (1), see MR]

(2) complies with the terms and conditions of the license, certificate, or other approval, as applicable, and the applicable requirements of this chapter and Code of Federal Regulations, title 10, part 71, subpart H, and

[For text of subitem (3), see MR]

[For text of item B, see M R.]

C For a Type B or fissile material package, the design of which was approved by the NRC before April 1, 1996, the general license under subpart 1 is subject to the additional restrictions of Code of Federal Regulations, title 10, section 71 19.

Statutory Authority: MS s 144.1202, 144.1203

History: 32 SR 831

4731.0408 GENERAL LICENSE; DOT SPECIFICATION CONTAINER.

[For text of subpart 1, see M.R.]

Subp 2 Approved quality assurance program. The general license issued under subpart 1 applies only to a licensee who has a quality assurance program approved by the NRC as complying with Code of Federal Regulations, title 10, part 71, subpart H

[For text of subp 3, see MR.]

Subp 4. Use within United States. 'The general license issued under subpart 1 is subject to the limitation that the specification container may not be used for a shipment to a location outside the United States except by multilateral approval, as defined under DOT regulations, Code of Federal Regulations, title 49, section 173 403

Subp 5. Expiration date. This part expires October 1, 2008.

Statutory Authority: MS s 144 1202, 144 1203

History: 32 SR 831

4731.0409 GENERAL LICENSE; FOREIGN-APPROVED PACKAGE.

[For text of subpart 1, see MR]

Subp 2 **Approved quality assurance program.** Except as otherwise provided in parts 4731 0400 to 4731.0455, the general license issued under subpart 1 applies only to a licensee who has a quality assurance program approved by the NRC as complying with Code of Federal Regulations, title 10, part 71, subpart H

[For text of subp 3, see M R.]

Subp 4 Certificate conditions. The general license issued under subpart 1 applies only to a licensee who

[For text of item A, see M R]

B complies with the terms and conditions of the certificate and revalidation and with the applicable requirements of this chapter. With respect to the quality assurance provisions of Code of Federal Regulations, title 10, part 71, subpart H, the licensee.is exempt from design, construction, and fabrication considerations

Statutory Authority: MS s 144 1202, 144.1203

History: 32 SR 831

4731.0410 GENERAL LICENSE; FISSILE MATERIAL.

Subpart 1 License to transport or deliver fissile material. A general license is issued to any licensee of the commissioner to transport fissile material, or to deliver fissile material to a carrier for transport, if the material is shipped according to this part. The fissile material need not be contained in a package that meets the standards of part 4731 0412 and Code of Federal Regulations, title 10, sections 71 41 to 71 77, if the material is shipped according to this part. However, the material must be contained in a Type A package. The Type A package must also meet the DOT requirements in Code of Federal Regulations, title 49, section 173 417(a)

- Subp 2 Approved quality assurance program. The general license issued under subpart 1 applies only to a licensee who has a quality assurance program approved by the NRC as complying with Code of Federal Regulations, title 10, part 71, subpart H
- Subp 3 **Type A quantity limits.** The general license issued under subpart 1 applies only when a package's contents
 - A. contain less than a Type A quantity of fissile material, and
- B. contain less than 500 total grams of beryllium, graphite, or hydrogenous material enriched in deuterium
 - Subp 4 Fissile material labeled with a criticality safety index.
- A The general license applies only to packages containing fissile material that are labeled with a criticality safety index that:
 - (1) has been determined according to subpart 7; and
 - (2) has a value less than or equal to ten
- B. For a shipment of multiple packages containing fissile material, the sum of the criticality safety indices must be less than or equal to 50 for shipment on a nonexclusive use conveyance and less than or equal to 100 for shipment on an exclusive use conveyance.
 - Subp 5 [Repealed, 32 SR 831]
 - Subp 6 [Repealed, 32 SR 831]
 - Subp 7 Criticality safety index values.
- A. The value for the criticality safety index must be greater than or equal to the number calculated by the following equation:

$$\mathrm{CSI} = 10 \left[\frac{\mathrm{grams~of~}^{235}\mathrm{U}}{\mathrm{X}} + \frac{\mathrm{grams~of~}^{233}\mathrm{U}}{\mathrm{Y}} + \frac{\mathrm{grams~of~Pu}}{\mathrm{Z}} \right]$$

- B The calculated criticality safety index must be rounded up to the first decimal place
- C. The values of X, Y, and Z used in the criticality safety index equation must be taken from subpart 8 or 9, as appropriate
- D If subpart 9 is used to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium must be assumed to be zero
- E. The values in subpart 8 for X, Y, and Z must be used to determine the criticality safety index if
 - (1) uranium-233 is present in the package,
 - (2) the mass of plutonium exceeds one percent of the mass of uranium-235,
- (3) the uranium is of unknown uranium-235 enrichment or greater than 24 weight percent enrichment, or
- (4) substances having a moderating effectiveness, that is, an average hydrogen density greater than H_20 , for example certain hydrocarbon oils or plastics, are present in any form, except as polyethylene used for packing or wrapping

Subp 8 Mass limits for general license packages containing mixed quantities of fissile material of uranium-235 of unknown enrichment.

	Fissile material mass mixed with moderating substances having an average hydrogen density less than or equal to H_2O (grams)	Fissile material mass mixed with moderating substances having an average hydrogen density greater than H_2O^a (grams)
²³⁵ U (X)	60	38
²³³ U (Y) ·	43	27
²³⁹ Pu or ²⁴¹ Pu (Z)	37	24

 $^{^{}a}$ When mixtures of moderating substances are present, the lower mass limits shall be used if more than 15 percent of the moderating substance has an average hydrogen density greater than $H_{2}O$

Subp 9 Mass limits for general license packages containing uranium-235 of known enrichment.

Uranium enrichment in weight percent of ²³⁵ U not exceeding	Fissile material mass of ²³⁵ U (X) (grams)
24	60
20	63
15	67
11	72
10	76
9.5	78
9	81
8.5	82
8	85
7.5	88
7	90
65	93 .
6	97
5.5	, 102
5	108
45	114
· 4	120
3.5	132
3	150
2.5	180
2	246
1.5	408

RADIATION SAFETY 4731.0411

1 35			·	480
1	4			1,020
0 92		1		1,800

Statutory Authority: MS s 144 1202; 144 1203

History: 32 SR 831

4731.0411 GENERAL LICENSE; PLUTONIUM-BERYLLIUM SPECIAL FORM MATERIAL.

Subpart 1 **Transport of plutonium-beryllium.** A general license is issued to any licensee of the commissioner to transport fissile material in the form of plutonium-beryllium (Pu-Be) special form sealed sources, or to deliver Pu-Be sealed sources to a carrier for transport, if the material is shipped according to this part. The material need not be contained in a package that meets the requirements of part 4731.0412 and Code of Federal Regulations, title 10, sections 71 41 to 71 77, however, the material must be contained in a Type A package. The Type A package must also meet the DOT requirements of Code of Federal Regulations, title 49, section 173 417(a).

Subp. 2 **Approved quality assurance program.** The general license issued under subpart 1 applies only to a licensee who has a quality assurance program approved by the NRC as complying with part 4731 0412 and Code of Federal Regulations, title 10, part 71, subpart H

Subp 3 **Package contents.** The general license issued under subpart 1 applies only when a package's contents.

A contain no more than a Type A quantity of radioactive material, and

B contain less than 1,000 grams of plutonium, provided that plutonium-239, plutonium-241, or any combination of these radionuclides, constitutes less than 240 grams of total quantity of plutonium in the package

Subp 4 Packages labeled with criticality safety index. The general license issued under subpart 1 applies only to packages labeled with a criticality safety mdex that

- A. has been determined according to subpart 5,
- B has a value less than or equal to 100; and
- C for a shipment of multiple packages containing Pu-Be sealed sources, the sum of the criticality safety indices must be less than or equal to 50 (for shipment on a nonexclusive use conveyance) and less than or equal to 100 (for shipment on an exclusive use conveyance).

Subp 5 Criticality safety index.

A The value for the criticality safety index must be greater than or equal to the number calculated by the following equation

$$CSI = 10 \left[\frac{\text{grams of }^{239}\text{Pu} + \text{grams of }^{241}\text{Pu}}{24} \right]$$

B The calculated criticality safety index must be rounded up to the first decimal place.

Statutory Authority: MS s 144 1202; 144:1203

History: 32 SR 831

4731.0415 ROUTINE DETERMINATIONS.

Before each shipment of licensed material, a licensee must ensure that the package with its contents satisfies the applicable requirements of the license and parts 4731.0400 to 4731 0455. The licensee must determine that

[For text of items A to K, see M R.]

Statutory Authority: MS s 144 1202, 144 1203

History: 32 SR 831

4731.0416 AIR TRANSPORT OF PLUTONIUM.

Subpart 1 Limitations for plutonium transport. Notwithstanding the provisions of any general license and notwithstanding any exemptions stated directly in parts 4731 0400 to 4731 0455 or included indirectly by citation to Code of Federal Regulations, title 49, chapter I, as may be applicable, a licensee must ensure that plutonium in any form, whether for import, export, or domestic shipment, is not transported by air, or delivered to a carrier for air transport, unless.

[For text of item A, see M R]

B the plutonium is contained in a material in which the specific activity is less than or equal to the activity concentration values for plutonium specified in part 4731 0422, subpart 3, and in which the radioactivity is essentially uniformly distributed,

[For text of items C and D, see MR]

[For text of subp 2, see MR]

Statutory Authority: MS s 144 1202, 144 1203

History: 32 SR 831

4731.0419 ADVANCE NOTIFICATION OF SHIPMENT OF IRRADIATED REACTOR FUEL AND NUCLEAR WASTE.

[For text of subpart 1, see M R.]

Subp 2 Shipments requiring notice. Advance notification is required under this part for shipments of irradiated reactor fuel in quantities less than that subject to the advance notification requirements of Code of Federal Regulations, title 10, section 73.37, paragraph (f). Advance notification is also required under this part for shipments of heensed material, other than irradiated fuel, meeting the following three conditions.

A the licensed material is required by parts 4731.0400 to 4731.0455 to be in Type B packaging for transportation,

[For text of item B, see M R.]

C the quantity of licensed material in a single package exceeds the least of the following

[For text of subitems (1) and (2), see MR.]

(3) 27,000 C1 (1,000 TBq)

Subp 3. Procedures for submitting notification.

A The notification required under this part must

[For text of subitems (1) and (2), see MR]

(3) if delivered by any other means than mail, reach the office of the commissioner and the governor or governor's designee at least four days before the beginning of the seven-day period during which departure of the shipment is estimated to occur.

[For text of item B, see MR]

C The licensee must retain a copy of the notification as a record for three years

Subp 4. **Information to be furnished in advance notification of shipment.** An advance notification of shipment of irradiated reactor fuel or nuclear waste must contain the following information:

[For text of items A to F, see MR]

Subp 5 **Revision notice.** A licensee who finds that schedule mformation, previously furnished under this part to the commissioner and a governor or governor's designee, will not be met must telephone a responsible individual in the commissioner's office and the governor or governor's designee and inform the individual of the extent of the delay beyond the schedule originally reported

Subp 5a. **Record retained.** The hoensee must maintain a record of the name of the individual contacted for three years

Subp 6 Cancellation notice.

- A A licensee who cancels an irradiated reactor fuel or nuclear waste shipment for which advance notification has been sent must send a cancellation notice to the commissioner, the governor of each state or the governor's designee previously notified, and the director of the Division of Nuclear Security, Office of Nuclear Security and Incident Response, NRC
- B The licensee must state in the notice that it is a cancellation and identify the advance notification that is being canceled
 - C The licensee must retain a copy of the notice as a record for three years

Statutory Authority: MS s 144 1202; 144.1203

History: 32 SR 831

4731.0421 QUALITY ASSURANCE ORGANIZATION.

[For text of subps 1 to 7, see MR]

Subp. 8 Access to management. Irrespective of the organizational structure, the individuals assigned the responsibility for ensuring effective execution of any portion of the quality assurance program, at any location where activities subject to parts 4731 0400 to 4731.0455 are being performed, must have direct access to the levels of management necessary to perform this function

Statutory Authority: MS s 144.1202, 144 1203

History: 32 SR 831

4731.0422 A, AND A, VALUES FOR RADIONUCLIDES.

Subpart 1 [Repealed, 32 SR 831]

Subp 1a A, and A, values.

Element and atomic number and symbol of radionuclide

	A ₁ (TBq)	$A_{1}(C_{1})^{b}$	A ₂ (TBq)	$A_2 (C_1)^b$
Actinium (89)				
Ac-225 ^a	8 0 x 10 ⁻¹	2.2×10^{1}	60×10^{-3}	1 6 x 10 ⁻¹
Ac-227 ^a	9 0 x 10 ⁻¹	24 x 10 ¹	9.0 x 10 ⁻⁵	2.4×10^{-3}
Ac-228	60 x 10 ⁻¹	1 6 x 10 ¹	5 0 x 10 ⁻¹	1 4 x 10 ¹
Silver (47)				
Ag-105	20	5 4 x 10 ¹	20	5 4 x 10 ¹

Ag-108m ^a	70 x 10 ⁻¹	19 x 10 ¹	-7.0 x 10 ⁻¹	1.9 x 10 ¹
Ag-110m ^a	4 0 x 10 ⁻¹	1 1 x 10 ¹	40 x 10 ⁻¹	1 1 x 10 ¹
Ag-111	20	5 4 x 10 ¹	60 x 10 ⁻¹	16 x 10 ¹
			-	
Aluminum (13)	- 1		,	
A1-26	1 0 x 10 ⁻¹	27	1 0 x 10 ⁻¹	27
Americium (95)				
Am-241	1.0 x 10 ¹	2.7×10^2	10 x 10 ⁻³	2.7 x 10 ⁻²
Am-242m ^a	1.0 x 10 ¹	2.7×10^{2}	10 x 10 ⁻³	27 x 10 ⁻²
Am-243 ^a	5.0	1.4×10^2	1.0 x 10 ⁻³	2.7 x 10 ⁻²
A macon (19)				
Argon (18) Ar-37	4.0 x 10 ¹	1 1 x 10 ³	4 0 x 10 ¹	1.1 x 10 ³
Ar-39	4.0×10^{1}	1.1×10^{3}	2.0×10^{1}	5.4×10^{2}
Ar-41	3 0 x 10 ⁻¹	81	3.0×10^{-1}	8.1 ·
A1-41	3 0 X 10	0.1	3 0 X 10	01
Arsenic (33)				ı
As-72	3 0 x 10 ⁻¹	8 1	3 0 x 10 ⁻¹	8.1
As-73	4.0×10^{1}	1.1×10^3	40×10^{1}	1.1×10^{3}
As-74	1 0	27 x 10 ¹	9 0 x 10 ⁻¹	2 4 x 10 ¹
As-76	3 0 x 10 ⁻¹	8 1	3 0 x 10 ⁻¹	8 1
As-77	20 x 10 ¹	$5 4 \times 10^2$	7 0 x 10 ⁻¹	19 x 10 ¹
Astatine (85)				
At-211 ^a	2 0 x 10 ¹	5.4×10^{2}	5 0 x 10 ⁻¹	. 14 x 10 ¹
711 211	2 0 X 10	J + X 10	3 0 X 10	. 1 4 % 10
Gold (79)				
Au-193	7 0	1.9×10^2	2.0	5 4 x 10 ¹
Au-194	1 0	2.7×10^{1}	1 0	27 x 10 ¹
Au-195	1 0 x 10 ¹	2.7×10^2	6.0	1.6×10^{2}
Au-198	1.0	27 x 10 ¹	60 x 10 ⁻¹	1.6×10^{1}
Au-199	1.0×10^{1}	2.7×10^{2}	6.0 x 10 ⁻¹	16 x 10 ¹
Barium (56)				
Ba-131 ^a	20	5 4 x 10 ¹	20	5 4 x 10 ¹
Ba-133	3.0	8 1 x 10 ¹	3.0	8.1×10^{1}
Ba-133m	2 0 x 10 ¹	5.4×10^2	60 x 10 ⁻¹	1 6 x 10 ¹
	= 0 1k 10	5.1 A 10	JOATO ,	10110

203		1	RADIATION SA	FETY 4731.0422
Ba-140 ^a	5 0 x 10 ⁻¹	1 4 x 10 ¹	3 0 x 10 ⁻¹	8 1
Beryllium (4)				
Be-7	20 x 10 ¹	5.4×10^2	20 x 10 ¹	54×10^2
Be-10	4.0 x 10 ¹	1.1×10^3	60 x 10 ⁻¹	1.6×10^{1}
Bismuth (83)				
B1-205	70 x 10 ⁻¹	1.9 x 10 ¹	7 0 x 10 ⁻¹	19 x 10 ¹
B1-206	3 0 x 10 ⁻¹	8 1	3 0 x 10 ⁻¹	8 1
B1-207	7 0 x 10 ⁻¹	19 x 10 ¹	7.0×10^{-1}	1.9 x 10 ¹
B1-210	10	2 7 x 10 ¹	60 x 10 ⁻¹	16 x 10 ¹
B1-210m ^a	60 x 10 ⁻¹	1.6×10^{1}	20 x 10 ⁻²	5.4 x 10 ⁻¹
B1-212 ^a	7 0 x 10 ⁻¹	1 9 x 10 ¹	6.0 x 10 ⁻¹	1 6 x 10 ¹
Berkelium (97)			ı	-
Bk-247	8 0	22×10^{2}	8.0×10^{-4}	2 2 x 10 ⁻²
Bk-249 ^a	4.0 x 10 ¹	1.1×10^3	3 0 x 10 ⁻¹	8 1
Bromine (35)				
Br-76	40 x 10 ⁻¹	1 1 x 10 ¹	40 x 10 ⁻¹	1 1 x 10 ¹
Br-77	3 0	8 1 x 10 ¹	3 0	8 1 x 10 ¹
Br-82	40 x 10 ⁻¹	1 1 x 10 ¹	40 x 10 ⁻¹	1 1 x 10 ¹
Carbon (6)				
C-11	1 0	2.7×10^{1}	60 x 10 ⁻¹	16 x 10 ¹
C-14	40 x 10 ¹	1.1×10^3	3 0	8 1 x 10 ¹
Calcium (20)	ı			v
Ca-41	Unlimited .	Unlimited	Unlimited	Unlimited .
Ca-45	40 x 10 ¹	1.1×10^3	10	2.7×10^{1}
Ca-47 ^a	3 0	8.1 x 10 ¹	3 0 x 10 ⁻¹	8 1
Cadmium (48)	,		,	
Cd-109	30×10^{1}	8.1×10^{2}	20 ,	5 4 x 10 ¹
Cd-113m	40×10^{1}	1.1×10^3	5 0 x 10 ⁻¹	1 4 x 10 ¹
Cd-115 ^a	3 0	8 1 x 10 ¹	40 x 10 ⁻¹	1.1 x 10 ¹
Cd-115m	5 0 x 10 ⁻¹	1 4 x 10 ¹	5.0 x 10 ⁻¹	1.4×10^{1}

Cerium (58)				
Ce-139	7.0	19 x 10 ²	20	5 4 x 10 ¹
Ce-141	2 0 x 10 ¹	5.4×10^{2}	6 0 x 10 ⁻¹	1 6 x 10 ¹
Ce-143	9 0 x 10 ⁻¹	2 4 x 10 ¹	60 x 10 ⁻¹	1 6 x 10 ¹
Ce-144 ^a	2 0 x 10 ⁻¹	5 4	2 0 x 10 ⁻¹	5 4
Californium (98)				
Cf-248	4 0 x 10 ¹	1.1×10^3	60 x 10 ⁻³	1 6 x 10 ⁻¹
Cf-249	3 0	8 1 x 10 ¹	8.0 x 10 ⁻⁴	2 2 x 10 ⁻²
Cf-250	2.0×10^{1}	$5 4 \times 10^2$	2 0 x 10 ⁻³	5 4 x 10 ⁻²
Cf-251	7 0	$1 9 \times 10^{2}$	7 0 x 10 ⁻⁴	1 9 x 10 ⁻²
Cf-252 ^h	5 0 x 10 ⁻²	1 4	3 0 x 10 ⁻³	8.1 x 10 ⁻²
Cf-253 ^a	40 x 10 ¹	1.1×10^3	4 0 x 10 ⁻²	1 1
Cf-254	1 0 x 10 ⁻³	2 7 x 10 ⁻²	10 x 10 ⁻³	27 x 10 ⁻²
CLI (17)				
Chlorine (17)	10 10	2.7 102	co 10-1	4.6 401
CI-36	1.0×10^{1}	2.7×10^{2}	60 x 10 ⁻¹	1.6 x 10 ¹
Cl-38	2 0 x 10 ⁻¹	5 4	2.0 x 10 ⁻¹	5 4
Curium (96)				
Cm-240	40 x 10 ¹	1.1×10^{3}	20 x 10 ⁻²	5 4 x 10 ⁻¹
Cm-241	20	5.4 x 10 ¹	1.0	27×10^{1}
Cm-242	4 0 x 10 ¹	1.1×10^3	10 x 10 ⁻²	2 7 x 10 ⁻¹
Cm-243	90	2.4×10^{2}	1 0 x 10 ⁻³	27 x 10 ⁻²
Cm-244	20 x 10 ¹	$5 4 \times 10^{2}$	20 x 10 ⁻³	5.4 x 10 ⁻²
Cm-245	90	24×10^{2}	90 x 10 ⁻⁴	2 4 x 10 ⁻²
Cm-246	90	$2 4 \times 10^{2}$	90 x 10 ⁻⁴	2.4 x 10 ⁻²
Cm-247 ^a	3.0	8.1×10^{1}	1 0 x 10 ⁻³	27 x 10 ⁻²
Cm-248	2.0 x 10 ⁻²	5.4 x 10 ⁻¹	3 0 x 10 ⁻⁴	8 1 x 10 ⁻³
G 1 1 (05)				
Cobalt (27)	70 10 -1		m o 40sl	
Co-55	50 x 10 ⁻¹	1.4×10^{1}	50 x 10 ⁻¹	1 4 x 10 ¹
Co-56	3 0 x 10 ⁻¹	8 1	3 0 x 10 ⁻¹	8 1
Co-57	1 0 x 10 ¹	2.7×10^{2}	10×10^{1}	2.7×10^{2}
Co-58	1.0	2.7×10^{1}	10	2.7×10^{1}
Co-58m	4 0 x 10 ¹	1.1×10^3	40 x 10 ¹	1.1×10^3
Co-60	40×10^{-1}	1 1 x 10 ¹	4 0 x 10 ⁻¹	1 1 x 10 ¹

_	^	-
٠,	ŧ١	١,

RADIATION SAFETY 4731.0422

Chromium (24)				-
Cr-51	3 0 x 10 ¹	8.1×10^{2}	3 0 x 10 ¹	8.1×10^2
G (55)				
Cesium (55)		1.1.2		
Cs-129	40	1.1×10^{2}	40	1.1×10^2
Cs-131	3 0 x 10 ¹	8.1×10^2	30×10^{1}	8.1×10^2
Cs-132	10	27 x 10 ¹	10	2.7×10^{1}
Cs-134	7.0×10^{-1}	1.9×10^{1}	7 0 x 10 ⁻¹	1 9 x 10 ¹
Cs-134m	40 x 10 ¹	1.1×10^3	6 0 x 10 ⁻¹	1 6 x 10 ¹
Cs-135	40×10^{1}	1.1×10^3	1 0	27×10^{1}
Cs-136	5.0 x 10 ⁻¹	1.4×10^{1}	5 0 x 10 ⁻¹	1.4×10^{1}
Cs-137 ^a	20	5 4 x 10 ¹	6 0 x 10 ⁻¹	1 6 x 10 ¹
Copper (29)				
Cu-64	60	1.6×10^2	1.0	2.7×10^{1}
Cu-67	10 x 10 ¹	2.7×10^{2}	70 x 10 ⁻¹	19 x 10 ¹
Dysprosium (66)				
Dy-159	20×10^{1}	54×10^{2}	2 0 x 10 ¹	5.4×10^2
Dy-165	9 0 x 10 ⁻¹	$2 4 \times 10^{1}$	60 x 10 ⁻¹	1 6 x 10 ¹
Dy-166 ^a	9 0 x 10 ⁻¹	2 4 x 10 ¹	3 0 x 10 ⁻¹	8 1
Erbium (68)	;		ı	
Er-169	40 x 10 ¹	1.1×10^3	1 0	27 x 10 ¹
Er-171	8 0 x 10 ⁻¹	2.2×10^{1}	5 0 x 10 ⁻¹	1.4×10^{1}
	00 % 10	22 % 10	5 0 X 10	1 1 1 1 1 0
Europium (63)	,	*		
Eu-147	20	5 4 x 10 ¹	20	5 4 x 10 ¹
Eu-148	5.0 x 10 ⁻¹	1 4 x 10 ¹	50 x 10 ⁻¹	1 4 x 10 ¹
Eu-149	20 x 10 ¹	$5 4 \times 10^2$	2 0·x 10 ¹	5 4 x 10 ²
Eu-150 (short-lived)	20	5.4×10^{1}	7 0 x 10 ⁻¹	1.9 x 10 ¹
Eu-150 (long-lived)	7 0 x 10 ⁻¹	1.9 x 10 ¹	70 x 10 ⁻¹	1 9 x 10 ¹
Eu-152	10	2.7 x 10 ¹	10	27 x 10 ¹
Eu-152m	8.0 x 10 ⁻¹	2 2 x 10 ¹	80 x 10 ⁻¹	2 2 x 10 ¹
Eu-154	9.0 x 10 ⁻¹	2.4×10^{1}	60 x 10 ⁻¹	1 6 x 10 ¹
Eu-155	2.0×10^{1}	5.4×10^2	3 0	8 1 x 10 ¹
Eu-156	7 0 x 10 ⁻¹	19 x 10 ¹	7 0 x 10 ⁻¹	19 x 10 ¹
				•

Fluorine (9)				
F-18	1.0	2.7×10^{1}	6.0 x 10 ⁻¹	1 6 x 10 ¹
Iron (26)				
Fe-52 ^a	3 0 x 10 ⁻¹	8.1	3.0 x 10 ⁻¹	8 1
Fe-55	4.0×10^{1}	1 1 x 10 ³	4.0×10^{1}	1.1×10^{3}
Fe-59	9 0 x 10 ⁻¹	2.4×10^{1}	90 x 10 ⁻¹	2.4×10^{1}
Fe-60 ^a	40 x 10 ¹	1 1 x 10 ³	2 0 x 10 ⁻¹	5 4
C-11 (2.1)			•	
Gallium (31)	7.0	19 x 10 ²		8 1 x 10 ¹
Ga-67	7 0 5 0 x 10 ⁻¹	1 9 x 10 1.4 x 10 ¹	3 0	8.1×10^{1}
Ga-68	4 0 x 10 ⁻¹	1.4×10^{1}	5 0 x 10 ⁻¹ 4 0 x 10 ⁻¹	1.4×10^{1} 1.1×10^{1}
Ga-72	4 U X 10	1 1 X 10	4 0 X 10	1 1 X 10
Gadolinium (64)				
Gd-146 ^a	5 0 x 10 ⁻¹	1 4 x 10 ¹	5 0 x 10 ⁻¹	1 4 x 10 ¹
Gd-148	20 x 10 ¹	5.4×10^2	20 x 10 ⁻³	5.4 x 10 ⁻²
Gd-153	1.0×10^{1}	2.7×10^2	90	24×10^2
Gd-159	3 0	8 1 x 10 ¹	6.0 x 10 ⁻¹	1.6 x 10 ¹
Germanium (32)			•	
Ge-68 ^a	5 0 x 10 ⁻¹	1 4 x 10 ¹	50 x 10 ⁻¹	1 4 x 10 ¹
Ge-71	4 0 x 10 ¹	1.1×10^3	4.0×10^{1}	1.1×10^3
Ge-77	3 0 x 10 ⁻¹	8 1	3 0 x 10 ⁻¹	8 1
Hafnium (72)				
Hf-172 ^a	6 0 x 10 ⁻¹	1 6 x 10 ¹	60 x 10 ⁻¹	1.6 x 10 ¹
Hf-175	3.0	8.1×10^{1}	3.0	8 1 x 10 ¹
Hf-181	20	5.4×10^{1}	5.0 x 10 ⁻¹	1.4×10^{1}
Hf-182	Unlimited	Unlimited	Unlimited	Unlimited
Mercury (80)				
Hg-194 ^a	1 0	27 x 10 ¹	10	27 x 10 ¹
Hg-195m ^a	3.0	8 1 x 10 ¹	7 0 x 10 ⁻¹	1.9×10^{1}
Hg-197	20 x 10 ¹	5 4 x 10 ²	1.0×10^{1}	27×10^{2}
Hg-197m	1.0×10^{1}	2.7×10^2	4.0 x 10 ⁻¹	1 1 x 10 ¹
Hg-203	5.0	1.4×10^{2}	1.0	27 x 10 ¹
1				•

2	ſ	٦.	7
Z	l	,	1

RADIATION SAFETY 4731.0422

	,			-
Holmium (67)	'		,	
Ho-166	4 0 x 10 ⁻¹	1.1×10^{1}	4 0 x 10 ⁻¹	1.1×10^{1}
Ho-166m .	6.0×10^{-1}	1.6×10^{1}	5.0 x 10 ⁻¹	1.4 x 10 ¹
Iodine (53)				
I-123	6.0	1.6×10^{2}	3 0	8 1, x 10 ¹
I-124	1.0	2.7×10^{1}	1.0	27 x 10 ¹
I-125	2.0 x 10 ¹	5.4×10^2 .	3.0 :	81 x 10 ¹
I-126	20	5 4 x 10 ¹	10	27 x 10 ¹
I-129	Unlimited	Unlimited	Unlimited	Unlimited
I-131	3.0	8 1 x 10 ¹	7.0 x 10 ⁻¹	19 x 10 ¹
I-132	4.0 x 10 ⁻¹	1.1 x 10 ¹	4.0 x 10 ⁻¹	1 1 x 10 ¹
I-133	7 0 x 10 ⁻¹	1.9×10^{1}	60 x 10 ⁻¹	16 x 10 ¹
I-134	3.0 x 10 ⁻¹	8 1	3.0×10^{-1}	8 1
I-135 ^a	60 x 10 ⁻¹	1 6 x 10 ¹	60 x 10 ⁻¹	1 6 x 10 ¹
	v		1 3 4,5	
Indium (49)		_		
In-111	3.0	8 1 x 10 ¹	30	81 x 10 ¹
In-113m	4.0	1.1×10^2	2.0	5.4×10^{1}
In-114m ^a	1 0 x 10 ¹	2.7×10^{2}	5 0 x 10 ⁻¹	1.4×10^{1}
In-115m	7 0	1.9×10^{2}	1 0	2.7×10^{1}
Iridium (77)	·			
Ir-189 ^a	1 0 x 10 ¹	2.7×10^{2}	1.0 x 10 ¹	2.7×10^{2}
Ir-190	7 0 x 10 ⁻¹	1 9 x 10 ¹	70 x 10 ⁻¹	1.9×10^{1}
Ir-192°	1 0	2.7 x 10 ¹	6.0 x 10 ⁻¹	16 x 10 ¹
Ir-194	3 0 x 10 ⁻¹	8 1	3 0 x 10 ⁻¹	8 1
Potassium (19)				
K-40	9.0 x 10 ⁻¹	24×10^{1}	9 0 x 10 ⁻¹	2 4 x 10 ¹
K-42	2 0 x 10 ⁻¹	5 4	20 x 10 ⁻¹	5 4
K-43	7 0 x 10 ⁻¹	19 x 10 ¹	60 x 10 ⁻¹	16 x 10 ¹
		ı		
Krypton (36)				
Kr-81	4.0×10^{1}	1.1×10^3	4.0×10^{1}	1.1×10^3
Kr-85	1 0 x 10 ¹	2.7×10^2	$1 \ 0 \ x \ 10^{1}$	2.7×10^{2}
Kr-85m	8 0	$2 2 \times 10^{2}$	3 0	8 1 x 10 ¹

Kr-87	2 0 x 10 ⁻¹	5 4	2.0 x 10 ⁻¹	5 4
Lanthanum (57)				
La-137	3.0×10^{1}	8.1×10^{2}	60	1.6×10^{2}
La-140	4 0 x 10 ⁻¹	1 1 x 10 ¹	4 0 x 10 ⁻¹	1.1 x 10 ¹
Lutetrum (71)				
Lu-172	60 x 10 ⁻¹	1.6×10^{1}	6.0 x 10 ⁻¹	1 6 x 10 ¹
Lu-173	8 0	22×10^{2}	8.0	22×10^{2}
Lu-174	9.0	24×10^{2}	9.0	24×10^{2}
Lu-174m	2.0×10^{1}	5.4×10^2	1 0 x 10 ¹	2.7×10^{2}
Lu-177	3.0×10^{1}	8.1×10^2	7 0 x 10 ⁻¹	19 x 10 ¹
Magnesium (12)				
Mg-28 ^a	3 0 x 10 ⁻¹	8.1	3 0 x 10 ⁻¹	8 1
Manganese (25)				
Mn-52	3 0 x 10 ⁻¹	8 1	3 0 x 10 ⁻¹	8.1
Mn-53	Unlimited	Unlimited	Unlimited	Unlimited,
Mn-54	1 0	27 x 10 ¹	1 0	2.7×10^{1}
Mn-56	3.0 x 10 ⁻¹	8 1	3.0 x 10 ⁻¹	8 1
Molybdenum (42)				
Mo-93	4.0 x 10 ¹	1.1×10^3	20 x 10 ¹	5.4×10^2
Mo-99 ^{a,1}	10	2 7 x 10 ¹	60 x 10 ⁻¹	1 6 x 10 ¹
Nitrogen (7)				
N-13	9 0 x 10 ⁻¹	2 4 x 10 ¹	60 x 10 ⁻¹	1.6 x 10 ¹
Sodium (11)				
Na-22	5 0 x 10 ⁻¹	1.4×10^{1}	5 0 x 10 ⁻¹	$1 4 \times 10^{1}$
Na-24	2 0 x 10 ⁻¹	54	2.0 x 10 ⁻¹	5 4
Niobium (41)				
Nb-93m	40 x 10 ¹	1.1×10^3	3 0 x 10 ¹	8.1×10^{2}
Nb-94	7 0 x 10 ⁻¹	1 9 x 10 ¹	7 0 x 10 ⁻¹	1 9 x 10 ¹
Nb-95	10	2.7×10^{1}	10	2.7×10^{1}
Nb-97	9 0 x 10 ⁻¹	2 4 x 10 ¹	60 x 10 ⁻¹	16 x 10 ¹

MINNESOTA RULES 2008					
209			RADIATION SAE	FETY 4731.0422	
Neodymium (60)					
Nd-147	60	16×10^{2}	6.0 x 10 ⁻¹	1 6 x 10 ¹	
Nd-149	60 x 10 ⁻¹	1.6 x 10 ¹	5.0 x 10 ⁻¹	1 4 x 10 ¹	
Nickel (28)	,				
Ni-59	Unlimited	Unlimited	Unlimited	Unlimited	
N1-63	40 x 10 ¹	1.1×10^3	3 0 x 10 ¹	8.1×10^{2}	
N1-65	4.0 x 10 ⁻¹	1 1 x 10 ¹	4.0 x 10 ⁻¹	1 1 x 10 ¹	
Neptunium (93)					
Np-235	40 x 10 ¹	1.1×10^3	40 x 10 ¹	1.1×10^3	
Np-236 (short-lived)	2 0 x 10 ¹	5 4 x 10 ²	20	5 4 x 10 ¹	
Np-236 (long-lived)	90×10^{0}	2.4×10^2	2 0 x 10 ⁻²	5.4 x 10 ⁻¹	
Np-237	2.0×10^{1}	54×10^{2}	2.0 x 10 ⁻³	5.4 x 10 ⁻²	
Np-239	7.0	19×10^{2}	4.0×10^{-1}	1 1 x 10 ¹	
Osmium (76)				y	
Os-185	1.0	2.7 x 10 ¹	1.0	27 x 10 ¹	
Os-191	10×10^{1}	27×10^{2}	20	5 4 x 10 ¹	
Os-191m	40 x 10 ¹	1.1×10^3	3 0 x 10 ¹	8.1×10^{2}	
Os-193	20	5.4 x 10 ¹	6.0 x 10 ⁻¹	16 x 10 ¹	
Os-194 ^a	3.0 x 10 ⁻¹	8 1	3 0 x 10 ⁻¹	8.1	

P-32	5.0 x 10 ⁻¹	1 4 x 10 ¹	5 0 x 10 ⁻¹	1.4 x 10 ¹
P-33	4.0×10^{1}	1.1×10^3	10	27×10^{1}
Protactinium (91)				
Tiotaetimum (91)				
Pa-230 ^a	20	5 4 x 10 ¹	7 0 x 10 ⁻²	19
Pa-231	4 0	1.1×10^{2}	4 0 x, 10 ⁻⁴	1 1 x 10 ⁻²
Pa-233	5.0	1.4×10^2	7 0 x 10 ⁻¹	1 9 x 10 ¹
Lead (82)				

 2.7×10^{1}

 1.1×10^3

1 1 x 10²

Unlimited

10.

30

 2.0×10^{1}

Unlimited

10

40

40 x 10¹

Unlimited

27 x 10¹

5 4 x 10²

8 1 x 10¹

Unlimited

Phosphorus (15)

Pb-201

Pb-202

Pb-203

Pb-205

Pb-210 ^a	10	27 x 10 ¹	5 0 x 10 ⁻²	1 4
Pb-212 ^a	7 0 x 10 ⁻¹	1 9 x 10 ¹	2.0 x 10 ⁻¹	5 4
~			•	
Palladium (46)	1			
Pd-103 ^a	40 x 10 ¹	1.1×10^3	4.0×10^{1}	1.1×10^3
Pd-107	Unlimited	Unlimited	Unlimited	Unlimited
Pd-109	2 0	5.4×10^{1}	5.0 x 10 ⁻¹	1 4 x 10 ¹
Promethium (61)				
Pm-143	3 0	8 1 x 10 ¹	3 0	8.1×10^{1}
Pm-144	7 0 x 10 ⁻¹	1 9 x 10 ¹	7.0 x 10 ⁻¹	19 x 10 ¹
Pm-145	3 0 x 10 ¹	8.1×10^{2}	1 0 x 10 ¹	27×10^2
Pm-147	40 x 10 ¹	1.1×10^3	20	5 4 x 10 ¹
Pm-148m ^a	8 0 x 10 ⁻¹	2 2 x 10 ¹	7 0 x 10 ⁻¹	1 9 x 10 ¹
Pm-149	2 0	5.4 x 10 ¹	6.0 x 10 ⁻¹	16 x 10 ¹
Pm-151	2.0	5 4 x 10 ¹	60 x 10 ⁻¹	1 6 x 10 ¹
Polonium (84)		2	2	,
Po-210	4 0 x 10 ¹	1.1×10^3	2 0 x 10 ⁻²	5.4 x 10 ⁻¹
Praseodymium (59)				
Pr-142	40 x 10 ⁻¹	1 1 x 10 ¹	4 0 x 10 ⁻¹	1.1×10^{1}
Pr-143	3.0	8 1 x 10 ¹	60 x 10 ⁻¹	1 6 x 10 ¹
Platinum (78)		1		1
Pt-188 ^a	1 0	2.7×10^{1}	8 0 x 10 ⁻¹	22×10^{1}
Pt-191	4 0	1.1×10^2	30	8 1 x 10 ¹
Pt-193	40×10^{1}	1.1×10^3	40×10^{1}	1.1×10^3
Pt-193m	40×10^{1}	1.1×10^3	5 0 x 10 ⁻¹	1.4×10^{1}
Pt-195m	1 0 x 10 ¹	2.7×10^2	5 0 x 10 ⁻¹	1 4 x 10 ¹
Pt-197	2 0 x 10 ¹	$5 4 \times 10^2$	60 x 10 ⁻¹	1 6 x 10 ¹
Pt-197m	1 0 x 10 ¹	2.7×10^2	60 x 10 ⁻¹	16 x 10 ¹
Plutonium (94)				
Pu-236	3 0 x 10 ¹	8 1 x 10 ²	3 0 x 10 ⁻³	8 1 x 10 ⁻²
Pu-237	2.0×10^{1}	5 4 x 10 ²	20 x 10 ¹	54 x 10 ²
Pu-238	1 0 x 10 ¹	2.7×10^2	1.0×10^{-3}	2.7 x 10 ⁻²
Pu-239	1 0 x 10 ¹	2.7×10^{2}	1.0×10^{-3}	2.7×10^{-2}
			,,,,,	

211		I	RADIATION SA	FETY 4731.0422
Pu-240	1 0 x 10 ¹	27×10^2	1 0 x 10 ⁻³	2 7 x 10 ⁻²
Pu-241 ^a	40 x 10 ¹	1.1×10^3	60 x 10 ⁻²	1.6
Pu-242	1.0×10^{1}	2.7×10^{2}	1 0 x 10 ⁻³	2 7 x 10 ⁻²
Pu-244 ^a	40 x 10 ⁻¹	1.1 x 10 ¹	1 0 x 10 ⁻³	2 7 x 10 ⁻²
Dodum (88)				
Radium (88) Ra-223 ^a	4.0 x 10 ⁻¹	1 1 x 10 ¹	7 0 x 10 ⁻³	1.9 x 10 ⁻¹
Ra-224 ^a	4.0×10^{-1}	1.1×10^{1}	7.0×10^{-2}	5 4 x 10 ⁻¹
Ra-224 Ra-225 ^a	40×10^{-1}	5.4	4.0×10^{-3}	
				1.1 x 10 ⁻¹
Ra-226 ^a	2 0 x 10 ⁻¹	54	30×10^{-3}	8 1 x 10 ⁻²
Ra-228 ^a	60 x 10 ⁻¹	16 x 10 ¹	2 0 x 10 ⁻²	5.4×10^{-1}
Rubidium (37)				
Rb-81	20	5 4 x 10 ¹	8.0×10^{-1}	2.2 x 10 ¹
Rb-83 ^a	20	5 4 x 10 ¹	2.0	5 4 x 10 ¹
Rb-84	1.0	27 x 10 ¹	10	27 x 10 ¹
Rb-86	5.0 x 10 ⁻¹	$1 4 \times 10^{1}$	5 0 x 10 ⁻¹	1 4 x 10 ¹
Rb-87	Unlimited	Unlimited	Unlimited	Unlimited
Rb (nat)	Unlimited	Unlimited	Unlimited	Unlimited
Rhenium (75)				
Re-184	1.0	2.7×10^{1}	10	27 x 10 ¹
Re-184m	3 0	8 1 x 10 ¹	10	27 x 10 ¹
Re-186	20	5 4 x 10 ¹	60 x 10 ⁻¹	1 6.x 10 ¹
Re-187	Unlimited	Unlimited	Unlimited	Unlimited
Re-188	40 x 10 ⁻¹	1 1 x 10 ¹	4.0 x 10 ⁻¹	1 1 x 10 ¹
Re-189 ^a	3 0	8 1 x 10 ¹	6.0 x 10 ⁻¹	1 6 x 10 ¹
Re (nat)	Unlimited	Unlimited	Unlimited	Unlimited '
Rhodium (45)				
Rh-99	2.0	5.4×10^{1}	20	5 4 x 10 ¹
Rh-101	4.0	1.1×10^{2}	3 0	8 1 x 10 ¹
Rh-102	5 0 x 10 ⁻¹	1 4 x 10 ¹	5 0 x 10 ⁻¹	1.4×10^{1}
Rh-102m	2.0	5 4 x 10 ¹	20	5 4 x 10 ¹
Rh-103m	40 x 10 ¹	$1.1^{'} \times 10^{3}$	40 x 10 ¹	1.1×10^3
Rh-105	1 0 x 10 ¹	2.7×10^{2}	8 0 x 10 ⁻¹	2.2 x 10 ¹

Radon (86)				
Rn-222 ^a	3 0 x 10 ⁻¹	8.1	40×10^{-3}	1 1 x 10 ⁻¹
Ruthenium (44)				
Ru-97	5 0	1.4×10^{2}	5 0	14×10^{2}
Ru-103 ^a	2 0	5 4 x 10 ¹	20	5 4 x 10 ¹
Ru-105	1 0	2.7×10^{1}	60 x 10 ⁻¹	1 6 x 10 ¹
Ru-106 ^a	2.0×10^{-1}	5 4	2 0 x 10 ⁻¹	5.4
Sulphur (16)				
S-35	4 0 x 10 ¹	1.1×10^3	3 0	8 1 x 10 ¹
Antimony (51)				
Sb-122	40 x 10 ⁻¹	1 1 x 10 ¹	40 x 10 ⁻¹	1 1 x 10 ¹
Sb-124	40 x 10 6 0 x 10 ⁻¹	1 6 x 10 ¹	60×10^{-1}	1.6×10^{1}
		5.4×10^{1}	10	2.7×10^{1}
Sb-125	20			
Sb-126	4 0 x 10 ⁻¹	1 1 x 10 ¹	4 0 x 10 ⁻¹	1 1 x 10 ¹
Scandium (21)			•	
Sc-44	5 0 x 10 ⁻¹	1 4 x 10 ¹	5 0 x 10 ⁻¹	1 4 x 10 ¹
Sc-46	5 0 x 10 ⁻¹	1 4 x 10 ¹	5 0 x 10 ⁻¹	1.4×10^{1}
Sc-47	1 0 x 10 ¹	2.7×10^2	7 0 x 10 ⁻¹	19 x 10 ¹
Sc-48	3.0 x 10 ⁻¹	8.1	3 0 x 10 ⁻¹	8 1
Selenium (34)				
Se-75	3 0	8 1 x 10 ¹ '	3 0	8 1 x 10 ¹
Se-79	40 x 10 ¹	1.1×10^{3}	20	5 4 x 10 ¹
2-1,				
Silicon (14)				
S1-31	6 0 x 10 ⁻¹	1 6 x 10 ¹	6.0 x 10 ⁻¹	1 6 x 10 ¹
S1-32	4.0×10^{1}	1.1×10^3	50 x 10 ⁻¹	1.4 x 10 ¹
Samarium (62)				
Sm-145	10 x 10 ¹	2.7×10^{2}	1 0 x 10 ¹	2.7×10^2
Sm-147	Unlimited	Unlimited	Unlimited	Unlimited
Sm-151	40 x 10 ¹	1.1×10^3	10 x 10 ¹	2.7×10^{2}
Sm-153	90	2.4×10^2	6.0 x 10 ⁻¹	1 6 x 10 ¹

RADIATION SAFETY 4731.0422

Tin (50)			•	
Sn-113 ^a	4 0′ ′	1.1×10^{2}	20	5 4 x 10 ¹
Sn-117m -	7 0	$1 9 \times 10^{2}$	4 0 x 10 ⁻¹	1 1 x 10 ¹
Sn-119m	40 x 10 ¹	1.1×10^3	3.0×10^{1}	8.1×10^{2}
Sn-121m ^a	40 x 10 ¹	1.1×10^3	90 x 10 ⁻¹	2 4 x 10 ¹
Sn-123	8 0 x 10 ⁻¹	2.2×10^{1}	6.0 x 10 ⁻¹	1 6 x 10 ¹
Sn-125	40 x 10 ⁻¹	1.1×10^{1}	4.0 x 10 ⁻¹	1 1 x 10 ¹
Sn-126 ^a	6 0 x 10 ⁻¹	1.6×10^{1}	4 0 x 10 ⁻¹	1.1×10^{1} .
Strontium (38)	, '			
Sr-82 ^a	2.0 x 10 ⁻¹	5.4	2.0 x 10 ⁻¹	5 4
Sr-85	20	54×10^{1}	2.0	5 4 x 10 ¹
Sr-85m	5 0	1.4×10^2	5 0	1 4 x 10 ²
Sr-87m	3.0	8 1 x 10 ¹	30	8.1 x 10 ¹
Sr-89	60 x 10 ⁻¹	1.6×10^{1}	60 x 10 ⁻¹	1 6 x 10 ¹
Sr-90 ^a	30 x 10 ⁻¹	8 1	3 0 x 10 ⁻¹	8 1
Sr-91 ^a	3 0 x 10 ⁻¹	8 1	3 0 x 10 ⁻¹	8 1
Sr-92ª	10	27 x 10 ¹	3 0 x 10 ⁻¹	8 1
T.,, (1)				t v
Tritium (1)	40 401	1.1.103	40 401	1 1 103
T (H-3)	4.0×10^{1} ,	1.1×10^3	40×10^{1}	1.1×10^3
Tantalum (73)	•			
Tantalum (73) Ta-178 (long-lived)	10	27 x 10 ¹	80 x 10 ⁻¹	2.2 x 10 ¹
	1 0 3 0 x 10 ¹	2 7 x 10 ¹ 8 1 x 10 ²	8 0 x 10 ⁻¹ 3 0 x 10 ¹	2.2 x 10 ¹ 8.1 x 10 ²
Ta-178 (long-lived)				
Ta-178 (long-lived) Ta-179 Ta-182	3 0 x 10 ¹	81×10^{2}	3 0 x 10 ¹	8.1×10^2
Ta-178 (long-lived) Ta-179 Ta-182 Terbium (65)	3 0 x 10 ¹ 9 0 x 10 ⁻¹	8 1 x 10 ² 2 4 x 10 ¹	3 0 x 10 ¹ 5 0 x 10 ⁻¹	8.1 x 10 ² 1.4 x 10 ¹
Ta-178 (long-lived) Ta-179 Ta-182 Terbium (65) Tb-157	3 0 x 10 ¹ 9 0 x 10 ⁻¹ 4 0 x 10 ¹	8 1 x 10 ² 2 4 x 10 ¹ 1 1 x 10 ³	3 0 x 10 ¹ 5 0 x 10 ⁻¹ 4 0 x 10 ¹	8.1×10^{2} 1.4×10^{1} 1.1×10^{3}
Ta-178 (long-lived) Ta-179 Ta-182 Terbium (65)	3 0 x 10 ¹ 9 0 x 10 ⁻¹	8 1 x 10 ² 2 4 x 10 ¹	3 0 x 10 ¹ 5 0 x 10 ⁻¹ 4 0 x 10 ¹ 1 0	8.1 x 10 ² 1.4 x 10 ¹ 1 1 x 10 ³ 2.7 x 10 ¹
Ta-178 (long-lived) Ta-179 Ta-182 Terbium (65) Tb-157 Tb-158	3 0 x 10 ¹ 9 0 x 10 ⁻¹ 4 0 x 10 ¹ 1.0	8 1 x 10 ² 2 4 x 10 ¹ 1 1 x 10 ³ 2 7 x 10 ¹	3 0 x 10 ¹ 5 0 x 10 ⁻¹ 4 0 x 10 ¹	8.1×10^{2} 1.4×10^{1} 1.1×10^{3}
Ta-178 (long-lived) Ta-179 Ta-182 Terbium (65) Tb-157 Tb-158 Tb-160 Technetium (43)	3 0 x 10 ¹ 9 0 x 10 ⁻¹ 4 0 x 10 ¹ 1.0	8 1 x 10 ² 2 4 x 10 ¹ 1 1 x 10 ³ 2 7 x 10 ¹ 2 7 x 10 ¹	3 0 x 10 ¹ 5 0 x 10 ⁻¹ 4 0 x 10 ¹ 1 0	8.1 x 10 ² 1.4 x 10 ¹ 1 1 x 10 ³ 2.7 x 10 ¹
Ta-178 (long-lived) Ta-179 Ta-182 Terbium (65) Tb-157 Tb-158 Tb-160	3 0 x 10 ¹ 9 0 x 10 ⁻¹ 4 0 x 10 ¹ 1.0 1 0	8 1 x 10 ² 2 4 x 10 ¹ 1 1 x 10 ³ 2 7 x 10 ¹ 2 7 x 10 ¹	3 0 x 10 ¹ 5 0 x 10 ⁻¹ 4 0 x 10 ¹ 1 0 6 0 x 10 ⁻¹	8.1 x 10 ² 1.4 x 10 ¹ 1 1 x 10 ³ 2.7 x 10 ¹ 1 6 x 10 ¹
Ta-178 (long-lived) Ta-179 Ta-182 Terbium (65) Tb-157 Tb-158 Tb-160 Technetium (43)	3 0 x 10 ¹ 9 0 x 10 ⁻¹ 4 0 x 10 ¹ 1.0 1 0 2 0 4 0 x 10 ⁻¹	8 1 x 10 ² 2 4 x 10 ¹ 1 1 x 10 ³ 2 7 x 10 ¹ 2 7 x 10 ¹	3 0 x 10 ¹ 5 0 x 10 ⁻¹ 4 0 x 10 ¹ 1 0 6 0 x 10 ⁻¹	8.1 x 10 ² 1.4 x 10 ¹ 1 1 x 10 ³ 2.7 x 10 ¹ 1 6 x 10 ¹
Ta-178 (long-lived) Ta-179 Ta-182 Terbium (65) Tb-157 Tb-158 Tb-160 Technetium (43) Tc-95m ^a	3 0 x 10 ¹ 9 0 x 10 ⁻¹ 4 0 x 10 ¹ 1.0 1 0	8 1 x 10 ² 2 4 x 10 ¹ 1 1 x 10 ³ 2 7 x 10 ¹ 2 7 x 10 ¹	3 0 x 10 ¹ 5 0 x 10 ⁻¹ 4 0 x 10 ¹ 1 0 6 0 x 10 ⁻¹	8.1 x 10 ² 1.4 x 10 ¹ 1 1 x 10 ³ 2.7 x 10 ¹ 1 6 x 10 ¹

Tc-97m	4.0×10^{1}	1.1×10^3	10	27 x 10 ¹
Tc-98	8 0 x 10 ⁻¹	2.2×10^{1}	7.0 x 10 ⁻¹	1.9 x 10 ¹
Tc-99	4.0×10^{1}	1.1×10^{3}	9 0 x 10 ⁻¹	24×10^{1}
Tc-99m	1.0×10^{1}	2.7×10^{2}	4 0	1.1×10^{2}
Tellurium (52)				
Te-121	2.0	5 4 x 10 ¹	20	5.4 x 10 ¹
Te-121m	5 0	1.4×10^{2}	3 0	8 1 x 10 ¹
Te-123m	8 0	$2 2 \times 10^{2}$	1 0	2 7 x 10 ¹
Te-125m	20 x 10 ¹	5.4×10^2	90 x 10 ⁻¹	2 4 x 10 ¹
Te-127	20×10^{1}	5.4×10^2	7.0×10^{-1}	1 9 x 10 ¹
Te-127m ^a	20 x 10 ¹	54×10^{2}	5.0 x 10 ⁻¹	1 4 x 10 ¹
Te-129	7 0 x 10 ⁻¹	19 x 10 ¹	60 x 10 ⁻¹	1 6 x 10 ¹
Te-129m ^a	80 x 10 ⁻¹	2 2 x 10 ¹	4.0 x 10 ⁻¹	1 1 x 10 ¹
Te-131m ^a	7 0 x 10 ⁻¹	1 9 x 10 ¹	5 0 x 10 ⁻¹	1 4 x 10 ¹
Te-132 ^a	5 0 x 10 ⁻¹	1 4 x 10 ¹	4.0 x 10 ⁻¹	1.1 x 10 ¹
Thorium (90)				
Th-227	1 0 x 10 ¹	2.7×10^2	50 x 10 ⁻³	1 4 x 10 ⁻¹
Th-228 ^a	5.0 x 10 ⁻¹	1 4 x 10 ¹	1 0 x 10 ⁻³	2 7 x 10 ⁻²
Th-229	5 0	$1 4 \times 10^{2}$	5 0 x 10 ⁻⁴	1 4 x 10 ⁻²
Th-230	1 0 x 10 ¹	27×10^{2}	1 0 x 10 ⁻³	27 x 10 ⁻²
Th-231	4.0×10^{1}	1.1×10^3	20 x 10 ⁻²	5 4 x 10 ⁻¹
Th-232	Unlimited	Unlimited	Unlimited	Unlimited
Th-234 ^a	3 0 x 10 ⁻¹	8 1	3 0 x 10 ⁻¹	8 1
Th (nat)	Unlimited	Unlimited	Unlimited	Unlimited
			,	
Titanium (22)				
T1-44 ^a	5.0 x 10 ⁻¹	1.4 x 10 ¹	40 x 10 ⁻¹	1.1 x 10 ¹
TI 11 (04)				-,
Thallium (81)	0.0 4.04	9 4 401	0.0 10-1	
TI-200	9.0 x 10 ⁻¹	24×10^{1}	9 0 x 10 ⁻¹	24×10^{1}
TI-201	1 0 x 10 ¹	2.7×10^{2}	4.0	1.1×10^2
T1-202	2.0	5.4×10^{1}	2.0	5.4×10^{1}
T1-204	1.0×10^{1}	2.7×10^2	7.0 x 10 ⁻¹	1.9 x 10 ¹

Thulum (60)	t			
Thulium (69)		10 102	0.0 10 ⁻¹	2.2 x 10 ¹
Tm-167	70	1.9×10^{2}	8 0 x 10 ⁻¹	
Tm-170	3.0	8 1 x 10 ¹	6.0×10^{-1}	16 x 10 ¹
Tm-171	4 0 x 10 ¹	1.1×10^3	40 x 10 ¹	1.1×10^3
Uranium (92)	,	, .	1	
U-230 (fast lung absorption) ^{a,d}	40 x 10 ¹	1.1×10^3	1.0 x 10 ⁻¹	27
U-230 (medium lung absorption) ^{a,e}	40 x 10 ¹	1 1 x 10 ³	4.0 x 10 ⁻³	1 1 x 10 ⁻¹
U-230 (slow lung absorption) ^{a,f}	3 0 x 10 ¹	8 1 x 10 ²	3.0 x 10 ⁻³	8 1 x 10 ⁻²
U-232 (fast lung absorption) ^d	40 x 10 ¹	1.1 x 10 ³	1.0 x 10 ⁻²	2.7 x 10 ⁻¹
U-232 (medium lung absorption) ^e	40 x 10 ¹	1 1 x 10 ³	7 0 x 10 ⁻³	1 9 x 10 ⁻¹
U-232 (slow lung absorption) ^f	1 0 x 10 ¹	27 x 10 ²	1 0 x 10 ⁻³	2 7 x 10 ⁻²
U-233 (fast lung absorption) ^d	4.0 x 10 ¹	1 1 x 10 ³	9 0 x 10 ⁻²	2 4
U-233 (medium lung absorption) ^e	40 x 10 ¹	1 1 x 10 ³	2 0 x 10 ⁻²	5 4 x 10 ⁻¹
U-233 (slow lung absorption) ^f	40 x 10 ¹	1 1 x 10 ³ ·	60 x 10 ⁻³	1 6 x 10 ⁻¹
U-234 (fast lung absorption) ^d	40 x 10 ¹	1 1 x 10 ³	9 0 x 10 ⁻²	24
U-234 (medium lung absorption) ^e	40 x 10 ¹	1.1 x 10 ³	2.0 x 10 ⁻²	5.4 x 10 ⁻¹
U-234 (slow lung absorption) ^f	40 x 10 ¹	1.1 x 10 ³	6 0 x 10 ⁻³	1.6 x 10 ⁻¹
U-235 (all lung absorption types) ^{a,d,e,f}	Unlimited	Unlimited	Unlimited	Unlimited
U-236 (fast lung absorption) ^d	Unlimited	Unlimited	Unlimited	Unlimited
U-236 (medium lung absorption) ^e	4.0 x 10 ¹	1 1 x 10 ³	2.0 x 10 ⁻²	5 4 x 10 ⁻¹
U-236 (slow lung absorption) ^f	40 x 10 ¹	1 1 x 10 ³	60 x 10 ⁻³	1 6 x 10 ⁻¹
U-238 (all lung absorption types) ^{d,e,f}	Unlimited	Unlimited	Unlimited	Unlimited

U (nat)	Unlimited	Unlimited	Unlimited	Unlimited
U (enriched to 20% or less) ^g	Únlimited	Unlimited	Unlimited	Unlimited
U (dep)	Unlimited	Unlimited	Unlimited	Unlimited
Vanadium (23)				
V-48	4 0 x 10 ⁻¹	1 1 x 10 ¹	40 x 10 ⁻¹	1.1 x 10 ¹
V-49	4.0 x 10 ¹	$1 \ 1 \ x \ 10^3$	4.0 x 10 ¹	1.1×10^3
Tungsten (74)				
W-178 ^a	90	24×10^{2}	50	1.4×10^{2}
W-181	3 0 x 10 ¹	8.1×10^2 .	30×10^{1}	8.1×10^{2}
W-185	40 x 10 ¹	1.1×10^3	8 0 x 10 ⁻¹	2.2×10^{1}
W-187	2 0	5.4 x 10 ¹	6.0 x 10 ⁻¹	1 6 x 10 ¹
W-188 ^a	4.0 x 10 ⁻¹	1 1 x 10 ¹	3 0 x 10 ⁻¹	81.
				1
Xenon (54)	_			
Xe-122 ^a	4 0 x 10 ⁻¹	1.1×10^{1}	4 0 x 10 ⁻¹	1 1 x 10 ¹
Xe-123	20	5.4×10^{1}	7 0 x 10 ⁻¹	1.9 x 10 ¹
Xe-127	4 0	1.1×10^{2}	20	5.4×10^{1}
Xe-131m	4 0 x 10 ¹	1.1×10^3	40 x 10 ¹	1.1×10^3
Xe-133	20 x 10 ¹	5 4 x 10 ²	1 0 x 10 ¹	2.7×10^2
Xe-135	3 0	8 1 x 10 ¹	2 0	5.4 x 10 ¹
Yttrium (39)				
Y-87 ^a	1 0	2.7 x 10 ¹	10	2.7 x 10 ¹
Y-88	4 0 x 10 ⁻¹	1.1×10^{1}	4 0 x 10 ⁻¹	1.1×10^{1}
Y-90	3.0×10^{-1}	8.1	3.0×10^{-1}	81
Y-91	6.0×10^{-1}	1.6 x 10 ¹	6.0×10^{-1}	1.6×10^{1}
	20	5.0×10^{1}	20	5.4×10^{1}
Y-91m				
Y-92	2.0 x 10 ⁻¹	5 4	20 x 10 ⁻¹	5 4
Y-93	3 0 x 10 ⁻¹	8 1	3 0 x 10 ⁻¹	8 1
Ytterbium (70)				
Yb-169	4.0	1 1 x 10 ²	1.0	27 x 10 ¹
Yb-175	3 0 x 10 ¹	8 1 x 10 ²	90 x 10 ⁻¹	2 4 x 10 ¹

Zinc (30)			ı	
Zn-65	2.0	5 4 x 10 ¹	20	5.4 x 10 ¹
Zn-69	3.0	8.1 x 10 ¹	60 x 10 ⁻¹	16 x 10 ¹
Zn-69m ^a	3 0	8 1 x 10 ¹	60 x 10 ⁻¹	16 x 10 ¹
Zirconium (40)				
Zr-88	3 0	8 1 x 10 ¹	3 0	8 1 x 10 ¹
Zr-93	Unlimited	Unlimited	Unlimited	Unlimited
Zr-95 ^a	20	5 4 x 10 ¹	8 0 x 10 ⁻¹	2 2 x 10 ¹ .
Zr-97°	40 x 10 ⁻¹	1.1×10^{1}	4 0 x 10 ⁻¹	1 1 x 10 ¹

 $^{^{}a}A_{1}$ and A_{2} values include contributions from daughter nuclides with half-lives less than ten days.

Subp. 2 Specific activity. This subpart specifies specific activity for individual radionuclides

Element and Atomic	
Number and Symbol	of
Radionuclide	

Specific Activity

	•	•
	(Tbq/g)	' (C1/g)
. (00)		• •
Actinium (89)		. ,
Ac-225	2.1×10^{3}	5 8 x 10 ⁴
Ac-227	27 ,	7.2×10^{1}
Ac-228	$8 4 \times 10^4$	2.2×10^6

^bThe values of A_1 and A_2 in curies (C1) are approximate and for information only, the regulatory standard units are Terabecquerels (TBq) See Appendix A to Code of Federal Regulations, title 10, Part 71 - Determination of A_1 and A_2 , Section I

^cThe quantity may be determined from a measurement of the rate of decay or a measurement of the radiation level at a prescribed distance from the source

^dThese values apply only to compounds of uranium that take the chemical form of UF_6 , UO_2F_2 , and $UO_2(NO_3)_2$ in both normal and accident conditions of transport

^eThese values apply only to compounds of uranium that take the chemical form of UO₃, UF₄, and UCl₄ and hexavalent compounds in both normal and accident conditions of transport

^fThese values apply to all compounds of uranium other than those specified in notes d and e

^gThese values apply to unirradiated uranium only

 $^{{}^{}h}A_{1} = 0.1 \text{ TBq } (2.7 \text{ C1}) \text{ and } A_{2} = 0.001 \text{ TBq } (0.027 \text{ C1}) \text{ for Cf-252 for domestic use.}$

 $^{^{1}}A_{0} = 0.74$ TBq (20 C₁) for Mo-99 for domestic use

Silver (47)		
Ag-105	1.1×10^3	30×10^4
Ag-108m	9.7 x 10 ⁻¹	2 6 x 10 ¹
Ag-110m	1.8×10^2	47×10^3
Ag-111	5.8×10^3	1.6×10^{5}
Aluminum (13)		
Al-26	70 x 10 ⁻⁴	1 9 x 10 ⁻²
	,	
Americium (95)		
Am-241	1 3 x 10 ⁻¹	3.4
Am-242m	3 6 x 10 ⁻¹	1.0×10^{1}
Am-243	7.4×10^{-3}	20×10^{-1}
Argon (18)		
Ar-37	3.7×10^3	9.9 x 10 ⁴
Ar-39	1 3	3.4×10^{1}
Ar-41	15 x 10 ⁶	4.2×10^7
Ar-42	96	2.6×10^{2}
Arsenic (33)		,
As-72	6 2 x 10 ⁴	17 x 10 ⁶
As-73	82×10^{2}	2 2 x 10 ⁴
As-74	3.7×10^3	9.9×10^4
As-76	5 8 x 10 ⁴	1 6 x 10 ⁶
As-77	39×10^4	10×10^6
Astatine (85)		
At-211	7.6×10^4	2.1×10^6
Gold (79)		
Au-193	34×10^4	9 2 x 10 ⁵
Au-194	1 5 x 10 ⁴	4.1×10^{5}
Au-195	$1 4 \times 10^2$	3.7×10^3
Au-196	40×10^3	1 1 x 10 ⁵
Au-198	9.0×10^{3}	24×10^{5}
Au-199	77 x 10 ³	2.1 x 10 ⁵
		,

219		RADIATION SAFETY 4731.0422
Barium (56)	-	
Ba-131	3.1×10^3	8 4 x 10 ⁴
Ba-133m	2 2 x 10 ⁴	6 1 x 10 ⁵
Ba-133	9.4	2.6×10^2
Ba-140	2.7×10^3	7 3 x 10 ⁴
Beryllium (4)		,
Be-7	1.3 x 10 ⁴	3.5 x 10 ⁵
Be-10	8.3 x 10 ⁻⁴	2.2 x 10 ⁻²
Bismuth (83)		•
В1-205	15 x 10 ⁻³ .	4 2 x 10 ⁴
В1-206	3.8×10^3	1 0 x 10 ⁵
B ₁ -207	1.9	5 2 x 10 ¹
B1-210m	2.1 x 10 ⁻⁵	5 7 x 10 ⁻⁴
B ₁ -210	46 x 10 ³	1 2 x 10 ⁵
В1-212	5 4 x 10 ⁵	1 5 x 10 ⁷
Berkelium (97)		
Bk-247	3.8 x 10 ⁻²	1 0
Bk-249	6.1 x 10 ¹	1.6×10^3
Bromine (35)		
Br-76	9.4×10^4	2 5 x 10 ⁶
Br-77	2.6 x 10 ⁴	7.1 x 10 ⁵
Br-82	4.0×10^4	1 1 x 10 ⁶
Carbon (6)		
C-11	3.1×10^7	8 4 x 10 ⁸
C-14	1 6 x 10 ⁻¹	4 5
Calcium (20)		•
Ca-41	3.1 x 10 ⁻³	8 5 x 10 ⁻² `
Ca-45	66×10^{2}	1 8 x 10 ⁴
Ca-47	2.3×10^4	6 1 x 10 ⁵
Cadmium (48)		
Cd-109	9.6 x 10 ¹	2.6×10^3

TIONAR REPRESENTATION DISTRICT			
Cd-113m	8.3	2 2 x 10 ²	
Cd-115m	94×10^{2}	2 5 x 10 ⁴	
Cd-115	1 9 x 10 ⁴	5.1×10^5	
Cerium (58)		T.	
Ce-139	2.5×10^{2}	68 x 10 ³	
Ce-141	1.1×10^3	2.8×10^4	
Ce-143	2.5×10^4	6.6×10^5	
Ce-144	12×10^2	3.2×10^3	
Ce-144	1 2 X 10	32 X 10 · ·	
Californium (98)			
Cf-248	5.8 x 10 ¹	1.6×10^3	
Cf-249	1 5 x 10 ⁻¹	4.1	
Cf-250	4 0	1.1×10^2	
Cf-251	5.9 x 10 ⁻²	16	
Cf-252	20 x 10 ¹	54×10^{2}	
Cf-253	1.1×10^3	29 x 10 ⁴	
Cf-254	3.1×10^{2}	8.5×10^3	
Ch1 (17)			
Chlorine (17)	1.0 10-3	2.2 10-2	
Cl-36	1.2×10^{-3}	3 3 x 10 ⁻² 1.3 x 10 ⁸	
Cl-38	49 x 10 ⁶	1.3 X 10	
Curium (96)	. •		
Cm-240	7.5×10^2	20 x 10 ⁴	
Cm-241	61×10^2	1.7 x 10 ⁴	
Cm-242	$1 \ 2 \ x \ 10^2$	$3\ 3\ x\ 10^3$	
Cm-243	1.9 x 10 ⁻³	5 2 x 10 ¹	
Cm-244	3 0	8.1×10^{1}	
Cm-245	6 4 x 10 ⁻³	1.7×10^{-1}	
Cm-246	1.1 x 10 ⁻²	3 1 x 10 ⁻¹	
Cm-247	3.4 x 10 ⁻⁶	9 3 x 10 ⁻⁵	
Cm-248	1.6 x 10 ⁻⁵	4 2 x 10 ⁻³	
Cobalt (27)	,		
Co-55	1 1 x 10 ⁵	3.1×10^6	
Co-56	1.1×10^{3}	3.0×10^4	
C0-30	1 1 7 10	J.O A 10 ,	

221		RADIATION SAFETY 4731.0422
Co-57	3.1×10^{2}	8.4×10^3
Co-58m	2.2 x 10 ⁵	5 9 x 10 ⁶
Co-58	1.2×10^{3}	3.2 x 10 ⁴
Co-60	4.2 x 10 ¹	1 1 x 10 ³
Chromium (24)		,
Cr-51	3.4×10^3	9 2 x 10 ⁴
Cesium (55)		
Cs-129	2 8 x 10 ⁴	7 6 x 10 ⁵
Cs-131	$3 8 \times 10^3$	1 0 x 10 ⁵
Cs-132	5.7×10^3	1.5 x 10 ⁵
Cs-134m	3.0×10^{5}	80 x 10 ⁶
Cs-134	4 8 x 10 ¹	1 3 x 10 ³
Cs-135	4 3 x 10 ⁻⁵	1 2 x 10 ⁻³
Cs-136	2.7×10^3	7.3 x 10 ⁴
Cs-137	3 2	8.7 x 10 ¹
Copper (29)		
Cu-64	1 4 x 10 ⁵	3 9 x 10 ⁶
Cu-67	2.8×10^4	7.6×10^{5}
Cu-07	20 % 10	7 0 X 10
Dysprosium (66)		
Dy-159	2.1×10^{2}	5.7×10^3
Dy-165	$3 \ 0 \ x \ 10^5$	8 2 x 10 ⁶
Dy-166	8.6×10^3	2 3 x 10 ⁵
Erbium (68)		
Er-169	3.1×10^3	8 3 x 10 ⁴
Er-171	90 x 10 ⁴	24×10^6
Einsteinium (99)		v
Es-253		·
Es-254		
Es-254m		
Es-255		
— - -		

Europium (63)		
Eu-147	1.4×10^3	3 7 x 10 ⁴
Eu-148	6.0×10^2	16 x 10 ⁴
Eu-149	3.5×10^2	94×10^{3}
Eu-150	61 x 10 ⁴	1.6×10^6
Eu-152m	8 2 x 10 ⁴	22×10^6
Eu-152	6 5	1.8×10^{2}
Eu-154	98	26×10^{2}
Eu-155	1.8×10^{1}	49×10^{2}
Eu-156	20×10^{3}	5.5×10^4
Fluorine (9)		
F-18	3 5 x 10 ⁶	9 5 x 10 ⁷
Iron (26)	<u>-</u>	ı
Fe-52	27 x 10 ⁵	7.3×10^6
Fe-55	8 8 x 10 ¹	2.4×10^3
Fe-59	1.8×10^{3}	5.0×10^4
Fe-60	7 4 x 10 ⁻⁴	2 0 x 10 ⁻²
Fermium (100)		
Fm-255		
Fm-257		
Gallium (31)		
Ga-67	2 2 x 10 ⁴	60 x 10 ⁵
Ga-68	1.5×10^6	4.1×10^7
Ga-72	1 1 x 10 ⁵	31×10^6
Gadolinium (64)		
Gd-146	69×10^{2}	1 9 x 10 ⁴
Gd-148	1 2	32×10^{1}
Gd-153	1.3×10^{2}	3.5×10^3
Gd-159	3.9 x 10 ⁴	1 1 x 10 ⁶
Germanium (32)		
Ge-68	26 x 10 ²	7.1×10^3

223		RADIATION SAFETY 4731.0422
Ge-71	5 8 x 10 ³	1.6 x 10 ⁵
Ge-77	1 3 x 10 ⁵	3 6 x 10 ⁶
Hydrogen (1)		
H-3 (T)	3.6×10^2	9.7×10^3
Hafnium (72)		,
Hf-172	4.1 x 10 ¹	1 1 x 10 ³
Hf-175	39×10^{2}	1 1 x 10 ⁴
Hf-181	63×10^{2}	1 7 x 10 ⁴
Hf-182	8 1 x 10 ⁻⁶	2 2 x 10 ⁻⁴
Mercury (80)		
Hg-194	1.3 x 10 ⁻¹	3.5
Hg-195m	1.5×10^4	4.0×10^5
Hg-197m	2 5 x 10 ⁴	6.7 x 10 ⁵
Hg-197	9.2×10^3	2.5 x 10 ⁵
Hg-203	5.1×10^2	1 4 x 10 ⁴
Holmium (67)		•
Ho-163	27	7 6 x 10 ¹
Ho-166m	6 6 x 10 ⁻²	1.8
Ho-166	2.6 x 10 ⁴	70 x 10 ⁵
Iodine (53)		
I-123	7 1 x 10 ⁴	19 x 10 ⁶
I-124	9.3×10^3	2 5 x 10 ⁵
I-125	6 4 x 10 ²	1 7 x 10 ⁴
I-126	29×10^3	8 0 x 10 ⁴
I-129	6 5 x 10 ⁻⁶	1 8 x 10 ⁻⁴
1-131	4.6×10^3	1.2 x 10 ⁵
I-132	3 8 x 10 ⁵	1 0 x 10 ⁷
I-133	4 2 x 10 ⁴	1.1 x 10 ⁶
I-134	9.9 x 10 ⁵	2.7×10^7
I-135	1.3 x 10 ⁵	3 5 x 10 ⁶
Indium (49)		
In-111	1.5 x 10 ⁴	4 2 x 10 ⁵

TOTIO IZZ INIDATION	~~~~~	
In-113m	6.2 x 10 ⁵	17 x 10 ⁷
In-114m	8.6×10^{2}	23×10^4
In-115m	22 x 10 ⁵	6.1 x 10 ⁶
Iridium (77)		
Ir-189	1.9×10^3	5 2 x 10 ⁴
Ir-190	23×10^3	6.2 x 10 ⁴
Ir-192	34×10^{2}	92×10^3
Ir-193m	24×10^3	6.4×10^4
Ir-194	3 1 x 10 ⁴	84×10^5
Potassium (19)		
K-40	2 4 x 10 ⁻⁷	6.4 x 10 ⁻⁶
K-42	22 x 10 ⁵	60 x 10 ⁶
K-43	1 2 x 10 ⁵	3.3×10^6
Krypton (36)		
Kr-81	7.8 x 10 ⁻⁴	2 1 x 10 ⁻²
Kr-85m	3 0 x 10 ⁵	8 2 x 10 ⁶
Kr-85	1.5 x 10 ¹	39×10^{2}
Kr-87	10 x 10 ⁶	2 8 x 10 ⁷
Lanthanum (57)		
La-137	1 6 x 10 ⁻³	4 4 x 10 ⁻²
La-140	2.1 x 10 ⁴	5 6 x 10 ⁵
Lutetium (71)		
Lu-172	42×10^3	1.1×10^{5}
Lu-173	5.6 x 10 ¹	1.5×10^3
Lu-174m	2.0×10^2	5.3×10^3
Lu-174	2.3×10^{1}	62×10^{2}
Lu-177	4.1×10^3	1 1 x 10 ⁵
Magnesium (12)		
Mg-28	2.0×10^{5}	54×10^6
Manganese (25)		
Mn-52	1.6×10^4	4 4 x 10 ⁵

225		RADIATION SAFETY: 4731.0422
Mn-53	6 8 x 10 ⁻⁵	1 8 x 10 ⁻³
Mn-54	2.9×10^{2}	77 x 10 ³
Mn-56	8.0 x 10 ⁵	22×10^7
Molybdenum (42)	1	
Mo-93	4.1 x 10 ⁻²	11
Mo-99	1 8 x 10 ⁴	4.8 x 10 ⁵
Nitrogen (7)		•
N-13	5 4 x 10 ⁷	1 5 x 10 ⁹
Sodium (11)		
Na-22	$2 \ 3 \ x \ 10^2$	6 3 x 10 ³
Na-24	3.2×10^5	87 x 10 ⁶
Niobium (41)		•
Nb-92m	5.2×10^3	1.4 x 10 ⁵
Nb-93m	8 8	2.4×10^2
Nb-94	6.9 x 10 ⁻³	1.9 x 10 ⁻¹
Nb-95	1.5×10^3	3 9 x 10 ⁴
Nb-97	99 x 10 ⁵	2.7×10^7
Neodymium (60)		
Nd-147	3.0×10^3	8 1 x 10 ⁴
Nd-149	4.5×10^{5}	12×10^7
Nickel (28)		2
N1-59	3 0 x 10 ⁻³	8 0 x 10 ⁻²
N1-63	2.1	5.7 x 10 ¹
N1-65	7.1 x 10 ⁵	1.9×10^7
Neptunium (93)		
Np-235	5 2 x 10 ¹	1 4 x 10 ³
Np-236	47 x 10 ⁻⁴	1 3 x 10 ⁻²
Np-237	2 6 x 10 ⁻⁵	7 1 x 10 ⁻⁴
Np-239	86×10^3	2 3 x 10 ⁵

Osmum (76)		
Osmium (76)	2.9 102	7.5 103
Os-185	2.8×10^{2}	7.5×10^3
Os-191m	4.6×10^4	1.3×10^6
Os-191	1.6×10^3	44×10^4
Os-193	20 x 10 ⁴	5 3 x 10 ⁵
Os-194	1.1 x 10 ¹	3.1×10^2
Phosphorus (15)		
P-32	1 1 x 10 ⁴	29 x 10 ⁵
P-33	5 8 x 10 ³	1 6 x 10 ⁵
Protactinium (91)		
Pa-230	1.2×10^3	3 3 x 10 ⁴
Pa-231	1 7 x 10 ⁻³	47 x 10 ⁻²
Pa-233	77 x 10 ²	21 x 10 ⁴
Lead (82)		
Pb-201	62 x 10 ⁴	17 x 10 ⁶
Pb-202	1 2 x 10 ⁻⁴	3.4×10^{-3}
Pb-203	1 1 x 10 ⁴	3.0×10^{5}
Pb-205	4.5 x 10 ⁻⁶	1.2 x 10 ⁻⁴
Pb-210	2.8	7.6×10^{1}
Pb-212	5 1 x 10 ⁴	1.6×10^{6}
Palladıum (46)		
Pd-103	2.8×10^3	7.5×10^4
Pd-107	1 9 x 10 ⁻⁵	5 1 x 10 ⁻⁴
Pd-109	7.9 x 10 ⁴	2.1×10^6
Promethium (61)	•	
Pm-143	$1 \ 3 \ x \ 10^2$	3.4×10^3
Pm-144	9 2 x 10 ¹	2.5×10^3
Pm-145	5 2	1.4×10^{2}
Pm-147	3.4×10^{1}	9 3 x 10 ²
Pm-148m	7.9×10^2	2 1 x 10 ⁴
Pm-149	$1.5 \text{ x} \cdot 10^4$	4.0×10^5
Pm-151	2.7 x 10 ⁴	7.3 x 10 ⁵

227		RADIATION SAFETY 4731.0422
Polonium (84)		
Po-208	2.2×10^{1}	59 x 10 ²
Po-209	6.2 x 10 ⁻¹	1.7 x 10 ¹
Po-210	1.7×10^{2}	4.5×10^3
•		•
Praseodymium (59)		
Pr-142	4 3 x 10 ⁴	1 2 x 10 ⁶
Pr-143	2.5×10^3	67 x 10 ⁴
Platınum (78)		,
Pt-188	2.5×10^3	68 x 10 ⁴
Pt-191	8.7×10^3	2 4 x 10 ⁵
Pt-193m	5.8×10^3	1.6 x 10 ⁵
Pt-193	1 4	3 7 x 10 ¹
Pt-195m	6.2×10^3	1 7 x 10 ⁵
Pt-197m	3.7 x 10 ⁵	1.0×10^7
Pt-197	3 2 x 10 ⁴	8.7 x 10 ⁵
Plutonium (94)		
Pu-236	2.0 x 10 ¹	5 3 x 10 ²
Pu-237	4.5×10^{2}	1 2 x 1,0 ⁴
Pu-238	6.3 x 10 ⁻¹	1 7 x 10 ¹
Pu-239	2 3 x 10 ⁻³	62×10^{-2}
Pu-240	8 4 x 10 ⁻³	2.3 x 10 ⁻¹
Pu-241	3 8	1 0 x 10 ²
Pu-242	15 x 10 ⁻⁴	3.9×10^{-3}
Pu-244	67 x 10 ⁻⁷	1.8 x 10 ⁻⁵
		•
Radium (88)		~ · · · · · · · · · · · · · · · · · · ·
Ra-223	1.9×10^3	5 1 x 10 ⁴
Ra-224	5 9 x 10 ³	1.6×10^{5}
Ra-225	1.5×10^3	3.9 x 10 ⁴
Ra-226	3.7 x 10 ⁻²	1.0
Ra-228	10 x 10 ¹	2.7×10^2
Rubidium (37)		
Rb-81	3 1 x 10 ⁵	8 4 x 10 ⁶

228
220

4731.0422 RADIATION SAFETY			
Rb-83	68 x 10 ²	18 x 10 ⁴	
Rb-84	1.8×10^3	47 x 10 ⁴	
Rb-86	3.0×10^3	81 x 10 ⁴	
Rb-87	3.2 x 10 ⁻⁹	8 6 x 10 ⁻⁸	
Rb (natural)	67 x 10 ⁶	18 x 10 ⁸	
Rhenium (75)			
Re-183	38×10^{2}	1 0 x 1 ⁰	
Re-184m	1.6×10^{2}	4.3×10^3	
Re-184	69 x 10 ²	19 x 10 ⁴	
Re-186	69×10^3	19 x 10 ⁵	
Re-187	1.4 x 10 ⁻⁹	3 8 x 10 ⁻⁸	
Re-188	3.6 x 10 ⁴	9.8 x 10 ⁵	
Re-189	25 x 10 ⁴	68 x 10 ⁵	
Re (natural)		2.4 x 10 ⁻⁸	
Rhodium (45)			
Rh-99	3.0×10^3	8 2 x 10 ⁴	
Rh-101	4.1 x 10 ¹	1.1×10^3	
Rh-102m	2.3×10^{2}	62×10^3	
Rh-102	4 5 x 10 ¹	1.2×10^3	
Rh-103m	1 2 x 10 ⁶	3.3×10^7	
Rh-105	3.1 x 10 ⁴	84×10^5	
Radon (86)			
Rn-222	57 x 10 ³	15 x 10 ⁵	
Ruthenium (44)			
Ru-97	1.7 x 10 ⁴	4.6×10^5	
Ru-103	1.2×10^3	3 2 x 10 ⁴	
Ru-105	2.5×10^5	67 x 10 ⁶	
Ru-106	$1 \ 2 \ x \ 10^2$	$3 \ 3 \ x \ 10^3$	
Sulfur (16)	•		
S-35	1.6×10^3	4 3 x 10 ⁴	
Antimony (51)			
Sb-122	1 5 x 10 ⁴	40 x 10 ⁵	

229		RADIATION SAFETY 4731.0422
Sb-124	6.5×10^2	1.7 x 10 ⁴
Sb-125	3 9 x 10 ¹	1 0 x 10 ³
Sb-126	3.1×10^3	8 4 x 10 ⁴
Scandium (21)		
Sc-44	67 x 10 ⁵	1 8 x 10 ⁷
Sc-46	1 3 x 10 ³	3.4×10^4
Sc-47	3.1 x 10 ⁴	8 3 x 10 ⁵
Sc-48	5.5 x 10 ⁴	1 5 x 10 ⁶
Selenium (34)		
Se-75	5 4 x 10 ²	1 5 x 10 ⁴
Se-79	2.6 x 10 ⁻³	7 0 x 10 ⁻²
Silicon (14)		
S1-31	1 4 x 10 ⁶	3.9×10^7
Si-32	3.9	1.1×10^2
Samarium (62)		
Sm-145	9 8 x 10 ¹	2.6×10^3
Sm-147	8 5 x 10 ⁻¹	2.3 x 10 ⁻⁸
Sm-151	9 7 x 10 ⁻¹	2 6 x 10 ¹
Sm-153	1 6 x 10 ⁴	4.4 x 10 ⁵
Tin (50)		
Sn-113	3.7×10^{2}	1 0 x 10 ⁴
Sn-117m	30×10^3	8 2 x 10 ⁴
Sn-119m	$1 4 \times 10^{2}$	3.7×10^3
Sn-121m	2.0	5 4 x 10 ¹
Sn-123	3.0×10^2	8 2 x 10 ³
Sn-125	40×10^3	1.1 x 10 ⁵
Sn-126	1.0×10^{-3}	2 8 x 10 ⁻²
Strontium (38)		
Sr-82	2.3×10^3	6.2 x 10 ⁴
Sr-85m	1 2 x 10 ⁶	3 3 x 10 ⁷
Sr-85	$8 \ 8 \ x \ 10^2$	2 4 x 10 ⁴
Sr-87m	48 x 10 ⁵	1 3 x 10 ⁷

4731.0422 RADIATION SAFETY			
Sr-89	1.1×10^3	29 x 10 ⁴	
Sr-90	5 1	14×10^{2}	
Sr-91	1 3 x 10 ⁵	3 6 x 10 ⁶	
Sr-92	4.7×10^5	1.3×10^{7}	
Tritium (1)			
T (H-3)	3.6×10^2	9.7×10^3	
Tantalum (73)			
Ta-178	4 2 x 10 ⁶	1.1 x 10 ⁸	
Ta-179	4 1 x 10 ¹	1.1×10^3	
Ta-182	23×10^{2}	62×10^3	
Terbium (65)			
Tb-157	5.6 x 10 ⁻¹	1.5×10^{1}	
Tb-158	5 6 x 10 ⁻¹	1.5 x 10 ¹	
Tb-160	42×10^{2}	1 1 x 10 ⁴	
Technetium (43)			
Tc-95m	8.3×10^{2}	22×10^4	
Tc-96m	1.4×10^6	38×10^{7}	
Tc-96	1.2×10^4	$3\ 2\ x\ 10^5$	
Tc-97m	56×10^{2}	1.5×10^4	
Tc-97	5 2 x 10 ⁻⁵	1.4×10^{-3}	
Tc-98	3.2 x 10 ⁻⁵	87 x 10 ⁻⁴	
Tc-99m	19 x 10 ⁵	$5 \ 3 \ x \ 10^6$	
Tc-99	6 3 x 10 ⁻⁴	17 x 10 ⁻²	
Tellurium (52)			
Te-118	68×10^3	1.8×10^{5}	
Te-121m	2.6×10^{2}	70×10^{3}	
Te-121	2.4×10^3	64×10^4	
Te-123m	$3 \ 3 \ x \ 10^2$	89×10^3	
Te-125m	67×10^2	1.8×10^4	
Te-127m	3.5×10^{2}	94×10^3	
Te-127	98 x 10 ⁴	26×10^6	

 30×10^4

 1.1×10^3

Te-129m

231		RADIATION SAFETY 4731.0422
Te-129	7.7 x 10 ⁵	2 1 x 10 ⁷
Te-131m	3 0 x 10 ⁴	80 x 10 ⁵
Te-132	1.1×10^4	8 0 x 10 ⁵
Thorium (90)		•
Th-227	1.1×10^3	3 1 x 10 ⁴
Th-228	3.0×10^{1}	8 2 x 10 ²
Th-229	7 9 x 10 ⁻³	2.1 x 10 ⁻¹
Th-230	7 6 x 10 ⁻⁴	2 1 x 10 ⁻²
Th-231	20 x 10 ⁴	5.3 x 10 ⁵
Th-232	40 x 10 ⁻⁹	1 1 x 10 ⁻⁷
Th-234	86×10^{2}	2 3 x 10 ⁴
Th (natural)	8.1 x 10 ⁻⁹	2.2 x 10 ⁻⁷
Titanium (22)		
T1-44	6.4	1.7×10^{2}
Thallium (81)		**************************************
T1-200	2.2×10^4	6.0 x 10 ⁵
T1-201	7.9×10^3	2.1 x 10 ⁵
T1-202	2.0×10^3	5.3 x 10 ⁴
Tl-204	1.7 x 10 ¹	46×10^2
Thultum (69)		
Tm-167	3.1×10^3	8 5 x 10 ⁴
Tm-168	3.1×10^{2}	8 3 x 10 ³
Tm-170	22×10^{2}	60×10^3
Tm-171	40 x 10 ¹	1.1×10^3
Uranium (92)		
U-230	1.0×10^3	27 x 10 ⁴
U-232	8.3 x 10 ⁻¹	2.2 x 10 ¹
U-233	3.6×10^{-4}	9 7 x 10 ⁻³
U-234	2.3×10^{-4}	6.2 x 10 ⁻³
U-235	8 0 x 10 ⁻⁸	2.2 x 10 ⁻⁶
U-236	2.4 x 10 ⁻⁶	6.5 x 10 ⁻⁵
U-238	1 2 x 10 ⁻⁸	3 4 x 10 ⁻⁷

U (natural)	26 x 10 ⁻⁸	7 1 x 10 ⁻⁷
U (enriched 5% or less)		(See part 4731.0424)
U (enriched more than 5%)		(See part 4731 0424)
U (depleted)		(See part 4731.0424)
V (22)		
Vanadium (23)	C 2 103	1.7 105
V-48	63×10^3	1.7×10^{5}
V-49	30×10^{2}	8.1×10^3
Tungsten (74)		
W-178	1 3 x 10 ³	3.4×10^4
W-181	2.2×10^{2}	6.0×10^3
W-185	3.5×10^{2}	9.4×10^{3}
W-187	26 x 10 ⁴	70 x 10 ⁵
W-188	3.7×10^2	10 x 10 ⁴
Xenon (54)		
Xe-122	48 x 10 ⁴	1.3 x 10 ⁶
Xe-123	4 4 x 10 ⁵	1.2×10^{7}
Xe-127	1.0×10^{3}	2.8×10^4
Xe-131m	3.1×10^3	84×10^4
Xe-133	6.9×10^3	1 9 x 10 ⁵
Xe-135	9 5 x 10 ⁴	2.6 x 10 ⁶
Yttrium (39)		
Y-87	1.7×10^4	4.5×10^{5}
Y-88	5.2×10^2	1.4 x 10 ⁴
Y-90	20 x 10 ⁴	5 4 x 10 ⁵
Y-91m	15 x 10 ⁶	42 x 10 ⁷
Y-91	91 x 10 ²	25×10^4
Y-92	3.6 x 10 ⁵	9.6 x 10 ⁶
Y-93	1.2 x 10 ⁵	$3 \ 3 \ x \ 10^6$
Ytterbium (70)		
Yb-169	89 x 10 ²	2.4×10^4

	RADIATION SAFETY 4731.0422
66 x 10 ³	1.8 x 10 ⁵
30×10^{2}	8.2×10^3
1.2 x 10 ⁵	3 3 x 10 ⁶
1.8×10^6	4 9 x 10 ⁷
X .	•
66×10^2	1 8 x 10 ⁴
9 3 x 10 ⁻⁵	2.5 x 10 ⁻³
7.9×10^{2}	2.1×10^4
7 1 x 10 ⁴	1 9 x 10 ⁶
	3 0 x 10 ² 1.2 x 10 ⁵ 1.8 x 10 ⁶ 6 6 x 10 ² 9 3 x 10 ⁻⁵ 7 9 x 10 ²

Subp 3 Exempt material activity concentrations and exempt consignment activity limits. This subpart specifies exempt material activity concentrations and exempt consignment activity levels for radionuclides

Element and atomic number and symbol of radionuclide		Activity concentration for exempt material (Ci/g)	Activity limit for exempt consignment (Bq)	Activity limit for exempt consignment (C1)
Actinium (89)		•	1	
Ac-225	1 0 x 10 ¹	2.7 x 10 ⁻¹⁰	1.0 x 10 ⁴	27 x 10 ⁻⁷
Ac-227	1 0 x 10 ⁻¹	27 x 10 ⁻¹²	1.0×10^{3}	2.7 x 10 ⁻⁸
Ac-228	1 0 x 10 ¹	2 7 x 10 ⁻¹⁰	10 x 10 ⁶	27 x 10 ⁻⁵
Silver (47)				
Ag-105	10 x 10 ²	2.7 x 10 ⁻⁹	1 0 x 10 ⁶	27 x 10 ⁻⁵
_				
Ag-108m ^a	1 0 x 10 ¹	27 x 10 ⁻¹⁰	1 0 x 10 ⁶	2.7 x 10 ⁻⁵
Ag-110m	1 0 x 10 ¹	2.7×10^{-10}	1.0×10^{6}	27 x 10 ⁻⁵
Ag-111	1.0×10^3	2 7 x 10 ⁻⁸	1.0×10^6	27 x 10 ⁻⁵
Aluminum (13)				
Al-26	1.0 x 10 ¹	27 x 10 ⁻¹⁰	1 0 x 10 ⁵	2 7 x 10 ⁻⁶
Americium (95)	,			
Am-241	1.0	2 7 x 10 ⁻¹¹	10 x 10 ⁴	27 x 10 ⁻⁷
Am-242m ^a	10	2.7 x 10 ⁻¹¹	1.0×10^4	27 x 10 ⁻⁷
Am-243 ^a	10,	2 7 x 10 ⁻¹¹	10×10^3	2.7 x 10 ⁻⁸

Argon (18)				
Ar-37	10×10^6	2 7 x 10 ⁻⁵	1.0×10^{8}	2.7×10^{-3}
Ar-39	1.0×10^{7}	2.7 x 10 ⁻⁴	1.0×10^4	2.7×10^{-7}
Ar-41	1.0×10^{2}	2.7 x 10 ⁻⁹	1 0 x 10 ⁹	2.7 x 10 ⁻²
A				
Arsenic (33)	10 10	0.7 10-10	10 105	0 5 10-6
As-72	1.0×10^{1}	2.7×10^{-10}	1.0×10^{5}	2.7×10^{-6}
As-73	1.0×10^3	2.7×10^{-8}	1.0×10^7	27 x 10 ⁻⁴
As-74	1 0 x 10 ¹	2 7 x 10 ⁻¹⁰	1.0×10^6	2.7×10^{-5}
As-76	1.0×10^{2}	2.7 x 10 ⁻⁹	1.0×10^{5}	2.7×10^{-6}
As-77	1.0×10^3	2.7×10^{-8}	10×10^6	2.7×10^{-5}
Astatine (85)				
At-211	1.0×10^3	27 x 10 ⁻⁸	1 0 x 10 ⁷	27 x 10 ⁻⁴
Gold (79)				
Au-193	10×10^2	27 x 10 ⁻⁹	1 0 x 10 ⁷	2.7×10^{-4}
Au-194	1 0 x 10 ¹	2 7 x 10 ⁻¹⁰	1.0×10^6	2 7 x 10 ⁻⁵
Au-195	1.0×10^{2}	2.7 x 10 ⁻⁹	1.0×10^{7}	2.7 x 10 ⁻⁴
Au-198	10×10^2	2 7 x 10 ⁻⁹	10 x 10 ⁶	27 x 10 ⁻⁵
Au-199	1.0×10^{2}	27 x 10 ⁻⁹	1.0×10^6	2 7 x 10 ⁻⁵
D (50)	•			
Barium (56)	10 102	0.7 10-9	10 106	0.5 40-5
Ba-131	1.0×10^{2}	2.7×10^{-9}	1.0×10^6	27 x 10 ⁻⁵
Ba-133	10×10^{2}	27 x 10 ⁻⁹	10×10^6	2 7 x 10 ⁻⁵
Ba-133m	1.0×10^2	2.7 x 10 ⁻⁹	1.0×10^6	27 x 10 ⁻⁵
Ba-140 ^a	1.0×10^{1}	27 x 10 ⁻¹⁰	1 0 x 10 ⁵	27 x 10 ⁻⁶
Beryllium (4)				
Be-7	1.0×10^3	2.7 x 10 ⁻⁸	10 x 10 ⁷	2.7 x 10 ⁻⁴
Be-10	1.0×10^{4}	27 x 10 ⁻⁷	1.0×10^{6}	2 7 x 10 ⁻⁵
Bismuth (83)				
B1-205	1.0 x 10 ¹	27 x 10 ⁻¹⁰	1.0×10^6	2.7×10^{-5}
B1-206	1.0×10^{1}	2 7 x 10 ⁻¹⁰	1.0×10^{5}	27 x 10 ⁻⁶
Bi-207	1.0 x 10 ¹	2 7 x 10 ⁻¹⁰	10×10^{6}	2.7 x 10 ⁻⁵
В1-210	1.0×10^3	2.7 x 10 ⁻⁸	1 0 x 10 ⁶	27 x 10 ⁻⁵
B1-210m	1.0 x 10 ¹	27 x 10 ⁻¹⁰	1 0 x 10 ⁵	27 x 10 ⁻⁶

235			RADIATION SA	FETY 4731.0422
B1-212 ^a	1 0 x 10 ¹	2 7 x 10 ⁻¹⁰	1.0 x 10 ⁵	27 x 10 ⁻⁶
Berkelium (97)				
Bk-247	1 0	2 7 x 10 ⁻¹¹	1.0×10^4	27 x 10 ⁻⁷
Bk-249	1.0×10^3	27 x 10 ⁻⁸	10 x 10 ⁶	2.7 x 10 ⁻⁵
Bromine (35)		1		
Br-76	10 x 10 ¹	27 x 10 ⁻¹⁰	1 0 x 10 ⁵	27 x 10 ⁻⁶
Br-77	1.0×10^{2}	27 x 10 ⁻⁹	1.0×10^{6}	2 7 x 10 ⁻⁵
Br-82	1 0 x 10 ¹	2 7 x 10 ⁻¹⁰	1.0×10^6	27 x 10 ⁻⁵
Carbon(6)				
C-11	1.0×10^{1}	2.7×10^{-10}	1.0×10^6	27 x 10 ⁻⁵
C-14	1 0 x 10 ⁴	2.7 x 10 ⁻⁷	10 x 10 ⁷	2.7 x 10 ⁻⁴
Calcium (20)		•		
Ca-41	1 0 x 10 ⁵	2.7 x 10 ⁻⁶	1.0×10^{7}	27 x 10 ⁻⁴
Ca-45	10×10^4	2.7 x 10 ⁻⁷	10 x 10 ⁷	27 x 10 ⁻⁴
Ca-47	1 0 x 10 ¹	2 7 x 10 ⁻¹⁰	10×10^6	27 x 10 ⁻⁵
Cadmium (48)		•	,	
Cd-109	10 x 10 ⁴	27 x 10 ⁻⁷	1.0×10^6	2.7 x 10 ⁻⁵
Cd-113m	1.0×10^{3}	2.7 x 10 ⁻⁸	1.0×10^6	27 x 10 ⁻⁵
Cd-115	1.0×10^{2}	2 7 x 10 ⁻⁹	1.0×10^{6}	2 7 x 10 ⁻⁵
Cd-115m	1.0×10^3	27 x 10 ⁻⁸	10 x 10 ⁶	27 x 10 ⁻⁵
Cerium (58)	·			
Ce-139	1.0×10^{2}	27 x 10 ⁻⁹	1.0×10^6	27 x 10 ⁻⁵
Ce-141	1.0×10^{2}	27 x 10 ⁻⁹	1.0×10^{7}	2.7×10^{-4}
Ce-143	1.0×10^{2}	2 7 x 10 ⁻⁹	1.0×10^6	2 7 x 10 ⁻⁵
Ce-144 ^a	10×10^2	27 x 10 ⁻⁹	10×10^{5}	2.7 x 10 ⁻⁶
Californium (98)		,		
Cf-248	1 0 x 10 ¹	2 7 x 10 ⁻¹⁰	1 0 x 104	2.7 x 10 ⁻⁷
Cf-249	10	2 7 x 10 ⁻¹¹	1.0×10^{3}	27 x 10 ⁻⁸
Cf-250	1 0 x 10 ¹	2.7×10^{-10}	10×10^4	2 7 x 10 ⁻⁷
Cf-251	10	2.7 x 10 ⁻¹¹	10×10^{3}	27 x 10 ⁻⁸
Cf-252	1 0 x 10 ¹	2 7 x 10 ⁻¹⁰	1 0 x 10 ⁴	2 7 x 10 ⁻⁷

4731.0422	RADIATION SAFETY	

Cf-253	10×10^{2}	27 x 10 ⁻⁹	10 x 10 ⁵	27 x 10 ⁻⁶
Cf-254	1 0	2 7 x 10 ⁻¹¹	1.0×10^3	2 7 x 10 ⁻⁸
Chlorine (17)		_	_	_
Cl-36	1.0×10^4	27 x 10 ⁻⁷	10×10^6	2 7 x 10 ⁻⁵
C1-38	10 x 10 ¹	2.7×10^{-10}	1.0×10^{5}	2.7 x 10 ⁻⁶
Curium (96)				
Cm-240	10×10^{2}	27 x 10 ⁻⁹	10 x 10 ⁵	27 x 10 ⁻⁶
Cm-241	1.0×10^{2}	2.7 x 10 ⁻⁹	1.0×10^6	27 x 10 ⁻⁵
Cm-242	1.0×10^{2}	27 x 10 ⁻⁹	1.0×10^5	27 x 10 ⁻⁶
Cm-243	10	2 7 x 10 ⁻¹¹	1.0×10^4	2 7 x 10 ⁻⁷
Cm-244	1.0×10^{1}	27 x 10 ⁻¹⁰	1.0×10^4	2.7×10^{-7}
Cm-245	10	27 x 10 ⁻¹¹	1.0×10^3	2.7×10^{-8}
Cm-246	10	2 7 x 10 ⁻¹¹	1.0×10^{3}	27 x 10 ⁻⁸
Cm-247	10	2 7 x 10 ⁻¹¹	1 0 x 10 ⁴	2.7×10^{-7}
Cm-248	10	2 7 x 10 ⁻¹¹	1.0×10^3	2.7×10^{-8}
CIII-240	10	2 / X 10	1.0 X 10	2 / X 10
Cobalt (27)	•			
Co-55	1.0×10^{1}	27 x 10 ⁻¹⁰	1.0×10^6	27 x 10 ⁻⁵
Co-56	10 x 10 ¹	2 7 x 10 ⁻¹⁰	1.0 x 10 ⁵	2 7 x 10 ⁻⁶
Co-57	10×10^2	2.7 x 10 ⁻⁹	10 x 10 ⁶	27 x 10 ⁻⁵
Co-58	1.0×10^{1}	2 7 x 10 ⁻¹⁰	1.0×10^{6}	2.7 x 10 ⁻⁵
Co-58m	10 x 10 ⁴	2 7 x 10 ⁻⁷	1.0×10^{7} ,	27 x 10 ⁻⁴
Co-60	10 x 10 ¹	2 7 x 10 ⁻¹⁰	1.0 x 10 ⁵	2.7 x 10 ⁻⁶
Chromium (24)	2	g	,	
Cr-51	1.0×10^{3}	27 x 10 ⁻⁸	10×10^7	27 x 10 ⁻⁴
Cesium (55)				
Cs-129	1.0×10^{2}	27 x 10 ⁻⁹	1 0 x 10 ⁵	27 x 10 ⁻⁶
Cs-131	1.0×10^3	27 x 10 ⁻⁸	10 x 10 ⁶	27 x 10 ⁻⁵
Cs-132	1 0 x 10 ¹	2.7 x 10 ⁻¹⁰	1 0 x 10 ⁵	2 7 x 10 ⁻⁶
Cs-134	1 0 x 10 ¹	2 7 x 10 ⁻¹⁰	1 0 x 10 ⁴	2.7 x 10 ⁻⁷
Cs-134m	1.0×10^3	2.7×10^{-8}	1 0 x 10 ⁵	2.7×10^{-6}
Cs-135	1.0×10^4	2.7×10^{-7}	1.0×10^7	2.7×10^{-4}
Cs-136	1 0 x 10 ¹	2.7×10^{-10}	1.0 x 10 ⁵	2.7×10^{-6}
JD 100	~ U 24 AU	27710	IUAIU	2 / A 10

237			RADIATION SA	FETY 4731.0422
Cs-137 ^a	1 0 x 10 ¹	2 7 x 10 ⁻¹⁰	10 x 10 ⁴	2.7 x 10 ⁻⁷
Copper (29)			,	·
Cu-64	1.0×10^{2}	2 7 x 10 ⁻⁹	1.0×10^{6}	2.7×10^{-5}
Cu-67	10×10^{2}	2.7×10^{-9}	10×10^6	2.7 x 10 ⁻⁵
Dysprosium (66)	,			, ,
Dy-159	1.0×10^{3}	27 x 10 ⁻⁸	1.0×10^{7}	2 7 x 10 ⁻⁴
Dy-165	1.0×10^3	27 x 10 ⁻⁸	1.0×10^6	27 x 10 ⁻⁵
Dy-166	1.0×10^3	27 x 10 ⁻⁸	$10 \text{ x}.10^6$	2 7 x 10 ⁻⁵
Erbium (68)				
Er-169	1.0×10^4	27 x 10 ⁻⁷	1.0×10^7	2 7 x 10 ⁻⁴
Er-171	1.0×10^{2}	2 7 x 10 ⁻⁹	1.0×10^{6}	2 7 x 10 ⁻⁵
			`	
Europium (63)	•	•	,	_
Eu-147	10×10^{2}	27 x 10 ⁻⁹	1.0×10^6	2.7 x 10 ⁻⁵
Eu-148	1.0×10^{1}	2.7×10^{-10}	1.0×10^6	2 7 x 10 ⁻⁵
Eu-149	1.0×10^2	2.7×10^{-9}	1.0×10^{7}	2 7 x 10 ⁻⁴
Eu-150 (short-lived)	1.0×10^3	27 x 10 ⁻⁸	1.0×10^{6}	2 7 x 10 ⁻⁵
Eu-150 (long-lived)	1 0 x'10 ¹	2.7×10^{-10}	1.0×10^6	27 x 10 ⁻⁵
Eu-152	1.0×10^{1}	2 7 x 10 ⁻¹⁰	1.0×10^{6}	27 x 10 ⁻⁵
Eu-152m	$1 \ 0 \ \dot{x} \ 10^2$	2 7 x 10 ⁻⁹	10 x 10 ⁶	27 x 10 ⁻⁵
Eu-154	10 x 10 ¹	27 x 10 ⁻¹⁰	1.0×10^6	2.7 x 10 ⁻⁵
Eu-155	10 x 10 ²	27 x 10 ⁻⁹	1.0×10^7	27 x 10 ⁻⁴
Eu-156	$1.0 \text{ x}, 10^{1}$	$2.7 \text{ x}_{.}10^{-10}$	1.0×10^6	2 7 x 10 ⁻⁵
, ,		· ·	+,	
Fluorine (9)			,	10.5
F-18	10 x 10 ¹	$2.7 \text{ x}, 10^{-10}$	1.0×10^6	27 x 10 ⁻⁵
Iron (26)				
Fe-52	1 0 x 10 ¹	$2.7 \text{ x}^3 10^{-10}$	1 0 x 10 ⁶	2.7 x 10 ⁻⁵
Fe-55	10 x 10 ⁴	2.7×10^{-7}	1.0×10^6	2.7 x 10 ⁻⁵
Fe-59	1.0 x 10 ¹	27 x 10 ⁻¹⁰	1.0×10^6	27 x 10 ⁻⁵
Fe-60	10×10^{2}	27 x 10 ⁻⁹	1 0 x 10 ⁵	2 7 x 10 ⁻⁶

Gallium (31)				
Ga-67	1.0×10^{2}	27 x 10 ⁻⁹	10 x 10 ⁶	2.7 x 10 ⁻⁵
Ga-68	1 0 x 10 ¹	2.7×10^{-10}	1 0 x 10 ⁵	2.7×10^{-6}
Ga-72	1 0 x 10 ¹	2 7 x 10 ⁻¹⁰	1.0×10^{5}	2.7×10^{-6}
Qu 72	1 0 X 10	27 % 10	10 % 10	2 / X 10
Gadolimum (64)				
Gd-146	1.0 x 10 ¹	2.7×10^{-10}	10×10^6	2.7 x 10 ⁻⁵
Gd-148	10 x 10 ¹	2 7 x 10 ⁻¹⁰	1 0 x 10 ⁴	2 7 x 10 ⁻⁷
Gd-153	10×10^{2}	2.7 x 10 ⁻⁹	1.0×10^7	2 7 x 10 ⁻⁴
Gd-159	10×10^{3}	2 7 x 10 ⁻⁸	10 x 10 ⁶	2 7 x 10 ⁻⁵
C (22)				
Germanium (32)	10 - 10 ¹	2.7 x 10 ⁻¹⁰	1.0 105	27 x 10 ⁻⁶
Ge-68	1.0×10^{1}		1.0×10^5	
Ge-71	1.0×10^4	2.7×10^{-7}	1.0×10^8	2.7×10^{-3}
Ge-77	1.0×10^{1}	2 7 x 10 ⁻¹⁰	10×10^{5}	2 7 x 10 ⁻⁶
Tritium (1)				
H-3 (T)	1.0×10^6	2 7 x 10 ⁻⁵	10 x 10 ⁹	2 7 x 10 ⁻²
			,	
Hafnium (72)			_	, _
Hf-172	10×10^{1}	27 x 10 ⁻¹⁰	10×10^6	2.7×10^{-5}
Hf-175	1.0×10^{2}	2 7 x 10 ⁻⁹	10×10^6	2 7 x 10 ⁻⁵
Hf-181	1 0 x 10 ¹	2 7 x 10 ⁻¹⁰	10×10^6	2.7 x 10 ⁻⁵
Hf-182	1.0×10^2	27 x 10 ⁻⁹	1.0×10^6	2.7 x 10 ⁻⁵
Mercury (80)				
Hg-194	1 0 x 10 ¹	2.7 x 10 ⁻¹⁰	1.0 x 10 ⁶	2 7 x 10 ⁻⁵
Hg-195m	1.0×10^{2}	2.7 x 10 ⁻⁹	1.0 x 10 ⁶	2 7 x 10 ⁻⁵
Hg-197	1.0×10^{2}	2.7 x 10 ⁻⁹	10 x 10 ⁷	27 x 10 ⁻⁴
Hg-197m	1.0×10^2	2.7 x 10 ⁻⁹	1.0 x 10 ⁶	2.7 x 10 ⁻⁵
Hg-203	1.0×10^{2}	2.7 x 10 ⁻⁹	1 0 x 10 ⁵	27 x 10 ⁻⁶
5				
Holmium (67)				
Ho-166	10×10^{3}	2.7 x 10 ⁻⁸	10×10^{5}	2.7×10^{-6}
Ho-166m	1 0 x 10 ¹	2 7 x 10 ⁻¹⁰	1.0×10^6	2 7 x 10 ⁻⁵
Iodine (53)				
I-123	10×10^{2}	2.7 x 10 ⁻⁹	10 x 10 ⁷	27 x 10 ⁻⁴
1-123	10 7 10	2.1 A 1U	10 7 10	2 / X 10

239			RADIATION SA	AFETY 4731.0422
I-124	1.0 x 10 ¹	27 x 10 ⁻¹⁰	1 0 x 10 ⁶	2.7 x 10 ⁻⁵
I-125	1.0×10^{3}	27 x 10 ⁻⁸	1.0 x 10 ⁶	27 x 10 ⁻⁵
I-126	1.0×10^{2}	2.7 x 10 ⁻⁹	1 0 x 10 ⁶	27 x 10 ⁻⁵
I-129	1.0×10^{2}	2.7 x 10 ⁻⁹	1.0 x 10 ⁵	2.7 x 10 ⁻⁶
I-131	1.0×10^{2}	27 x 10 ⁻⁹	1.0×10^{6}	2.7 x 10 ⁻⁵
I-132	1.0×10^{1}	2.7 x 10 ⁻¹⁰	1.0×10^{5}	2.7 x 10 ⁻⁶
I-133	1 0 x 10 ¹	2 7 x 10 ⁻¹⁰	1.0×10^6	2 7 x 10 ⁻⁵
I-134	1 0 x 10 ¹	27 x 10 ⁻¹⁰	1.0×10^{5}	2.7 x 10 ⁻⁶
I-135	1 0 x 10 ¹	2 7 x 10 ⁻¹⁰	10×10^{6}	27 x 10 ⁻⁵
Indium (49)				
In-111	1.0×10^{2}	2 7 x 10 ⁻⁹	1.0×10^6	27 x 10 ⁻⁵
In-113m	1.0×10^{2}	27 x 10 ⁻⁹	10 x 10 ⁶	27 x 10 ⁻⁵
In-114m	1.0×10^{2}	27 x 10 ⁻⁹	1.0 x 10 ⁶	2.7 x 10 ⁻⁵
In-115m	1.0×10^{2}	27 x 10 ⁻⁹	1 0 x 10 ⁶	27 x 10 ⁻⁵
Irıdıum (77)				•
Ir-189	1.0×10^{2}	27 x 10 ⁻⁹	1.0×10^{7}	2.7 x 10 ⁻⁴
Ir-190	1 0 x 10 ¹	2.7×10^{-10}	1.0×10^{6}	2.7×10^{-5}
Ir-192	1 0 x 10 ¹	2.7×10^{-10}	1.0×10^{4}	2.7×10^{-7}
Ir-194	1.0×10^{2}	2.7 x 10 ⁻⁹	1.0×10^{5}	2.7×10^{-6}
17.	1 0 K 10	27 8 10	10 % 10	2 / X 10
Potassium (19)				
K-40	10×10^2	2 7 x 10 ⁻⁹	1.0×10^6	27 x 10 ⁻⁵
K-42	1.0×10^{2}	2.7 x 10 ⁻⁹	1.0×10^6	2.7 x 10 ⁻⁵
K-43	1 0 x 10 ¹	2 7 x 10 ⁻¹⁰	10×10^6	27 x 10 ⁻⁵
W 4: (26)				
Krypton (36)	1.0 - 104	0.7 . 10-7	1.0 107	0.7 10.4
Kr-81	10×10^4	2.7×10^{-7}	1.0×10^7	2 7 x 10 ⁻⁴
Kr-85	10×10^5	2.7×10^{-6}	1.0×10^4	2.7×10^{-7}
Kr-85m	1.0×10^3	2.7×10^{-8}	1.0×10^{10}	2.7×10^{-1}
Kr-87	1.0×10^2	2.7 x 10 ⁻⁹	10 x,10°	27 x 10 ⁻²
Lanthanum (57)				,
La-137	1.0×10^{3}	2.7×10^{-8}	1.0×10^7	2.7 x 10 ⁻⁴
La-140	1.0 x 10 ¹	27 x 10 ⁻¹⁰	1 0 x 10 ⁵	2.7 x 10 ⁻⁶

Lutetium (71)				
Lu-172	10 x 10 ¹	2.7×10^{-10}	1.0×10^6	2.7 x 10 ⁻⁵
Lu-173	1.0×10^{2}	27 x 10 ⁻⁹	1.0×10^7	2 7 x 10 ⁻⁴
Lu-174	10×10^{2}	27 x 10 ⁻⁹	1.0×10^7	2.7 x 10 ⁻⁴
Lu-174m	10×10^{2}	2.7 x 10 ⁻⁹	1.0×10^7	27 x 10 ⁻⁴
Lu-177	1.0×10^{3}	2.7 x 10 ⁻⁸	10 x 10 ⁷	2.7 x 10 ⁻⁴
3.6 (10)	•	,		
Magnesium (12)	4.0 4.01	2 - 40-10	,	• • • • • • • • • • • • • • • • • • • •
Mg-28	1.0×10^{1}	2.7×10^{-10}	1 0 x 10 ⁵	2.7×10^{-6}
Manganese (25)				
Mn-52	10×10^{1}	27 x 10 ⁻¹⁰	1.0 x 10 ⁵	2.7 x 10 ⁻⁶
Mn-53	1.0×10^{4}	27 x 10 ⁻⁷	10 x 10 ⁹	27 x 10 ⁻²
Mn-54	1.0×10^{1}	2.7×10^{-10}	1 0 x 10 ⁶	2 7 x 10 ⁻⁵
Mn-56	1.0×10^{1}	2.7 x 10 ⁻¹⁰	10×10^5	27 x 10 ⁻⁶
36 1 1 1 (40)				
Molybdenum (42)	1.0×10^{3}	0.7 10-8	1.0 1.08	0.7 10-3
Mo-93	•	2.7×10^{-8}	1.0×10^8	2.7×10^{-3}
Mo-99	1.0×10^{2}	2.7 x 10 ⁻⁹	1.0×10^6	27 x 10 ⁻⁵
,				
Nitrogen (7)	102	9	4.0.409	2 - 10-2
N-13	10×10^2	2.7 x 10 ⁻⁹	10 x 10 ⁹	2 7 x 10 ⁻²
			,	
Sodium (11)		10		5
Na-22	1.0×10^{1}	2.7×10^{-10}	10×10^6	2 7 x 10 ⁻⁵
Na-24	1.0×10^{1}	2 7 x 10 ⁻¹⁰	1.0×10^{5}	2.7×10^{-6}
Niobium (41)		_		
Nb-93m	1.0×10^4	2.7×10^{-7}	1.0×10^{7}	2.7×10^{-4}
Nb-94 '	1 0 x 10 ¹	2.7×10^{-10}	1.0×10^6	2.7 x 10 ⁻⁵
Nb-95	10×10^{1}	27 x 10 ⁻¹⁰	1.0×10^6	2.7×10^{-5}
Nb-97	10×10^{1}	2.7×10^{-10}	1.0×10^6	2 7 x 10 ⁻⁵
Neodymium (60)				
Nd-147	1.0×10^{2}	27 x 10 ⁻⁹ ·	10 x 10 ⁶	27 x 10 ⁻⁵
Nd-149	1.0×10^{2}	27 x 10 ⁻⁹	1.0×10^{6}	2.7×10^{-5}
NG-1-17	10 / 10	2 / A IU	10710	2./ A IU

241		;	RADIATION SA	FETY 4731.0422
Nickel (28)				
N1-59	1.0×10^{4}	2.7×10^{-7} .	1 0 x 10 ⁸	2.7 x 10 ⁻³ ,
N1-63	10 x 10 ⁵	27 x 10 ⁻⁶	1 0 x 10 ⁸	2.7 x 10 ⁻³ .
N1-65	1.0 x 10 ¹	2 7 x 10 ⁻¹⁰	1.0×10^6	27 x 10 ⁻⁵
Neptunium (93)				
Np-235	1.0×10^{3}	27 x 10 ⁻⁸	1.0×10^{7}	27 x 10 ⁻⁴
Np-236 (short-lived)	1.0 x 10 ³	2.7 x 10 ⁻⁸	10 x 10 ⁷	27 x 10 ⁻⁴
Np-236 (long-	10 102	0		
lived)	1.0×10^2	2.7×10^{-9}	1.0×10^5	2.7×10^{-6}
Np-237 ^a	10	2.7 x 10 ⁻¹¹	1.0×10^{3}	2 7 x 10 ⁻⁸
Np-239	10×10^{2}	27 x 10 ⁻⁹	1.0×10^{7}	2.7 x 10 ⁻⁴
Osmium (76)				
Os-185	1.0 x 10 ¹	2.7 x 10 ⁻¹⁰	1.0×10^6	2.7×10^{-5}
Os-191	10×10^2	27 x 10 ⁻⁹	10 x 10 ⁷	2 7 x 10 ⁻⁴
Os-191m	1.0×10^3	27 x 10 ⁻⁸	10 x 10 ⁷	- 2.7 x 10 ⁻⁴
Os-193	1.0×10^{2}	2.7 x 10 ⁻⁹	$1.0 \text{ x}, 10^6$	27 x 10 ⁻⁵
Os-194	1.0×10^2	2.7 x 10 ⁻⁹	1 0 x 10 ⁵	27 x 10 ⁻⁶
Phosphorus (15)	,			
P-32	1.0×10^{3}	27 x 10 ⁻⁸	10 x 10 ⁵	2.7 x 10 ⁻⁶
P-33	1.0×10^{5}	2 7 x 10 ⁻⁶	1.0×10^8	2.7×10^{-3}
	·			
Protactinium (91)	10 101	0.5 40:10	10 106	
Pa-230	1.0×10^{1}	2 7 x 10 ⁻¹⁰	1.0×10^6	2.7×10^{-5}
Pa-231	10	2 7 x 10 ⁻¹¹	1.0×10^3	2.7×10^{-8}
Pa-233	10×10^2	2.7 x 10 ⁻⁹	1.0 x 10 ⁷	27 x 10 ⁻⁴
Lead (82)				
Pb-201	1 0 x 10 ¹	27 x 10 ⁻¹⁰	1.0×10^6	2.7 x 10 ⁻⁵
Pb-202	1.0×10^3	2.7 x 10 ⁻⁸	10×10^6	27 x 10 ⁻⁵
Pb-203	$1~0~x~10^2$	2.7 x 10 ⁻⁹	10×10^6	2.7 x 10 ⁻⁵
Pb-205	1.0×10^4	27 x 10 ⁻⁷	1.0×10^7	27 x 10 ⁻⁴
Pb-210 ^a	1 0 x 10 ¹	2.7 x 10 ⁻¹⁰	1.0×10^4	27 x 10 ⁻⁷
Pb-212 ^a	1 0 x 10 ¹	2.7 x 10 ⁻¹⁰	1.0×10^{5}	27 x 10 ⁻⁶

Palladium (46)				
Pd-103	1.0×10^3	2.7×10^{-8}	1.0×10^8	2.7×10^{-3}
Pd-107	1.0×10^{5}	2 7 x 10 ⁻⁶	10 x 10 ⁸	2.7 x 10 ⁻³
Pd-109	1.0×10^3	2 7 x 10 ⁻⁸	1.0×10^6	27 x 10 ⁻⁵
D 1 (61)				
Promethium (61)	10 102	.	10 106	
Pm-143	1.0×10^2	2.7×10^{-9}	10×10^6	27 x 10 ⁻⁵
Pm-144	10 x 10 ¹	2.7×10^{-10}	1.0×10^6	2 7 x 10 ⁻⁵
Pm-145	10×10^3	27 x 10 ⁻⁸	1.0×10^7	27 x 10 ⁻⁴
Pm-147	1.0×10^4	27 x 10 ⁻⁷	1 0 x 10 ⁷	2.7×10^{-4}
Pm-148m	1 0 x 10 ¹	2.7×10^{-10} ·	1.0×10^6	27 x 10 ⁻⁵
Pm-149	1.0×10^{3}	2 7 x 10 ⁻⁸	1.0×10^6	27 x 10 ⁻⁵
Pm-151	1.0×10^2	2 7 x 10 ⁻⁹	1.0×10^6	27 x 10 ⁻⁵
D. I. (04)				
Polonium (84)				7
Po-210	$1.0 \text{ x}_1^{10^1}$	2.7×10^{-10}	10 x 10 ⁴	2 7 x 10 ⁻⁷
Praseodymium (59)	, ¥			
Pr-142	10×10^{2}	2.7 x 10 ⁻⁹	1.0×10^{5}	2.7 x 10 ⁻⁶
Pr-143	10 x 10 ⁴	27 x 10 ⁻⁷	1.0×10^6	27 x 10 ⁻⁵
Platinum (78)				_
Pt-188	1.0×10^{1}	2.7×10^{-10}	1.0×10^6	27 x 10 ⁻⁵
Pt-191	1.0×10^2	2 7 x 10 ⁻⁹	10×10^6	2.7 x 10 ⁻⁵
Pt-193	1.0×10^4	2 7 x 10 ⁻⁷	10×10^7	2.7×10^{-4}
Pt-193m	1.0×10^3	2 7 x 10 ⁻⁸	$1 \ 0 \ x \ 10^7$	2 7 x 10 ⁻⁴
Pt-195m	10×10^{2}	2.7 x 10 ⁻⁹	1.0×10^6	27 x 10 ⁻⁵
Pt-197	1.0×10^{3}	2.7 x 10 ⁻⁸	1.0×10^6	27 x 10 ⁻⁵
Pt-197m	1.0×10^2	2 7 x 10 ⁻⁹	1.0×10^6	2 7 x 10 ⁻⁵
Plutonium (94)				
Pu-236	1 0 x 10 ¹	2 7 x 10 ⁻¹⁰	10 x 10 ⁴	2.7 x 10 ⁻⁷
Pu-237	10×10^{3}	2.7×10^{-8}	1.0×10^7	2.7×10^{-4}
	10 x 10	2.7×10^{-11}	1.0×10^4	2.7×10^{-7}
Pu-238		2.7×10^{-11}		
Pu-239	10		1.0×10^4	2 7 x 10 ⁻⁷
Pu-240	10	27 x 10 ⁻¹¹	1.0×10^3	2.7×10^{-8}
Pu-241	10×10^2	2.7 x 10 ⁻⁹	10 x 10 ⁵	2 7 x 10 ⁻⁶

243			RADIATION SA	FETY 4731.0422
Pu-242	1 0	27 x 10 ⁻¹¹	1 0 x 10 ⁴	27 x 10 ⁻⁷
Pu-244	1 0	2.7 x 10 ⁻¹¹	1 0 x 10 ⁴	27 x 10 ⁻⁷
D - 1 (00)				
Radium (88)	10 102	0.5. 10- ⁹	10 105	2 7 40-6
Ra-223 ^a	1.0×10^{2}	2.7×10^{-9} 2.7×10^{-10}	1.0×10^{5}	27 x 10 ⁻⁶
Ra-224 ^a	1.0×10^{1}		1 0 x 10 ⁵	27 x 10 ⁻⁶
Ra-225	1.0×10^{2}	2.7 x 10 ⁻⁹	1 0 x 10 ⁵	27 x 10 ⁻⁶
Ra-226 ^a	1.0×10^{1}	27 x 10 ⁻¹⁰	$1~0~\mathrm{x}~10^4$	27 x 10 ⁻⁷
Ra-228 ^a	1.0×10^{1}	2.7×10^{-10}	1.0×10^{5}	2.7×10^{-6}
Rubidium (37)				
Rb-81	1 0 x 10 ¹	27 x 10 ⁻¹⁰	1.0×10^6	27 x 10 ⁻⁵
Rb-83	1.0×10^{2}	27 x 10 ⁻⁹	1.0×10^6	27 x 10 ⁻⁵
Rb-84	1.0 x 10 ¹	2.7 x 10 ⁻¹⁰	1 0 x 10 ⁶	27 x 10 ⁻⁵
Rb-86	1.0×10^{2}	2 7 x 10 ⁻⁹	1 0 x 10 ⁵	27 x 10 ⁻⁶
Rb-87	1 0 x 10 ⁴	2.7 x 10 ⁻⁷	1 0 x 10 ⁷	2.7 x 10 ⁻⁴
Rb (nat)	1 0 x 10 ⁴	2.7×10^{-7}	1 0 x 10 ⁷	27 x 10 ⁻⁴
Rhenium (75)				
Re-184	1.0 x 10 ¹	2.7 x 10 ⁻¹⁰	1.0 x 10 ⁶	27 x 10 ⁻⁵
Re-184m	1.0×10^{2}	2 7 x 10 ⁻⁹	1.0×10^{6}	2.7 x 10 ⁻⁵
Re-186	1.0×10^{3}	27 x 10 ⁻⁸	1.0×10^{6}	27 x 10 ⁻⁵
Re-187	1.0×10^6	2.7 x 10 ⁻⁵	1 0 x 109	2.7 x 10 ⁻²
Re-188	10×10^{2}	2.7 x 10 ⁻⁹	1 0 x 10 ⁵	27 x 10 ⁻⁶
Re-189	1.0×10^{2}	27 x 10 ⁻⁹	1.0×10^{6}	2.7 x _. 10 ⁻⁵
Re (nat)	1.0×10^6	2 7 x 10 ⁻⁵	10 x 10 ⁹	2 7 x 10 ⁻²
Rhodium (45)		, ,		
Rh-99	1 0 x 10 ¹	2.7 x 10 ⁻¹⁰	1 0 x 10 ⁶	2.7 x 10 ⁻⁵
Rh-101	1.0×10^{2}	2 7 x 10 ⁻⁹	1 0 x 10 ⁷	2.7×10^{-4}
Rh-102	1.0×10^{1}	2.7×10^{-10}	1.0×10^6	2.7×10^{-5}
Rh-102m	1.0×10^{2}	2.7×10^{-9}	1.0×10^6	2.7×10^{-5}
Rh-102m	1.0×10^4	2.7×10^{-7}	1.0×10^{-1}	2.7×10^{-3}
Rh-105m	1.0×10^{2}	2.7×10^{-9}	1.0×10^{7}	2 7 x 10 ⁻⁴
VII-103	1 0 X 10	2 / X 1U	1 U X 1U	∠ / X 1U .
Radon (86)		F		
Rn-222 ^a	10×10^{1} ,	2 7 x 10 ⁻¹⁰	1.0×10^{8}	2 7 x 10 ⁻³

Ruthenium (44)				
Ru-97	1.0×10^{2}	27 x 10 ⁻⁹	1 0 x 10 ⁷	27 x 10 ⁻⁴
Ru-103	10×10^{2}	2.7 x 10 ⁻⁹	10 x 10 ⁶	2 7 x 10 ⁻⁵
Ru-105	1.0×10^{1}	2.7 x 10 ⁻¹⁰	1 0 x 10 ⁶	2 7 x 10 ⁻⁵
Ru-106 ^a	1.0×10^{2}	2 7 x 10 ⁻⁹	1 0 x 10 ⁵	2 7 x 10 ⁻⁶
Sulfur (16)	_	,	•	
S-35	1.0×10^{5}	2.7×10^{-6}	1.0×10^8	27 x 10 ⁻³
Antimony (51)				
Sb-122	1.0×10^{2}	27 x 10 ⁻⁹	1.0×10^4	2 7 x 10 ⁻⁷
Sb-124	1.0 x 10 ¹	27 x 10 ⁻¹⁰	10×10^6	2 7 x 10 ⁻⁵
Sb-125	10×10^{2}	2.7 x 10 ⁻⁹	1.0 x 10 ⁶	27 x 10 ⁻⁵
Sb-126	1 0 x 10 ¹	2.7 x 10 ⁻¹⁰	1.0 x 10 ⁵	2 7 x 10 ⁻⁶
Scandium (21)			_	_
Sc-44	1.0 x 10 ¹	2.7×10^{-10}	1.0×10^{5}	27 x 10 ⁻⁶
Sc-46	10 x 10 ¹	27 x 10 ⁻¹⁰	10×10^6	27 x 10 ⁻⁵
Sc-47	10×10^{2}	27 x 10 ⁻⁹	10 x 10 ⁶	2 7 x 10 ⁻⁵
Sc-48	1.0×10^{1}	2 7 x 10 ⁻¹⁰	1 0 x 10 ⁵	2.7×10^{-6}
Selenium (34)				
Se-75	1.0×10^{2}	2.7 x 10 ⁻⁹	10 x 10 ⁶	2.7 x 10 ⁻⁵
Se-79	1.0×10^4	2 7 x 10 ⁻⁷	10 x 10 ⁷	2.7 x 10 ⁻⁴
	3			
Silicon (14)		2.5 4.0.8	10.106	a = . 10.5
S1-31	10×10^3	2.7×10^{-8}	1.0×10^6	27 x 10 ⁻⁵
S1-32	10×10^3	2 7 x 10 ⁻⁸	10×10^6	2 7 x 10 ⁻⁵
Samarıum (62)	, ,			
Sm-145	1.0×10^{2}	2.7 x 10 ⁻⁹	10 x 10 ⁷	2.7 x 10 ⁻⁴
Sm-147	10 x 10 ¹	27 x 10 ⁻¹⁰	1.0×10^4	2 7 x 10 ⁻⁷
Sm-151	1.0 x 10 ⁴	27 x 10 ⁻⁷	10 x 10 ⁸	2 7 x 10 ⁻³
Sm-153	10×10^{2}	2 7 x 10 ⁻⁹	1.0×10^6	27 x 10 ⁻⁵
T. (50)	ı			
Tin (50)	4.0 4.03	0 T 10-8	4.0 4.57	
Sn-113	1.0×10^3	2.7 x 10 ⁻⁸	10×10^7	2.7×10^{-4}
Sn-117m	1.0×10^{2}	2.7×10^{-9}	1.0×10^6	2.7 x 10 ⁻⁵

245		1	RADIATION SA	FETY 4731.0422
Sn-119m	1.0×10^{3}	27 x 10 ⁻⁸	1 0 x 10 ⁷	2.7 x 10 ⁻⁴
Sn-121m	1.0×10^{3}	2 7 x 10 ⁻⁸	1.0×10^{7}	2.7 x 10 ⁻⁴
Sn-123	1.0×10^{3}	2.7 x 10 ⁻⁸	1.0×10^6	27 x 10 ⁻⁵
Sn-125	1.0×10^{2}	27 x 10 ⁻⁹	1.0×10^{5}	2.7 x 10 ⁻⁶
Sn-126	10 x 10 ¹	27 x 10 ⁻¹⁰	1 0 x 10 ⁵	2 7 x 10 ⁻⁶
Strontium (38)				-
Sr-82	10 x 10 ¹	2.7 x 10 ⁻¹⁰	1.0×10^{5}	27 x 10 ⁻⁶
Sr-85	10×10^{2}	27 x 10 ⁻⁹	1.0×10^6	27 x 10 ⁻⁵
Sr-85m	1.0×10^2	2.7 x 10 ⁻⁹	1.0×10^{7}	2.7 x 10 ⁻⁴
Sr-87m	1.0×10^{2}	2.7 x 10 ⁻⁹	10×10^6	2.7 x 10 ⁻⁵ .
Sr-89	1.0×10^3	2 7 x 10 ⁻⁸	1.0×10^6	27 x 10 ⁻⁵
Sr-90 ^a	10×10^{2}	2.7 x 10 ⁻⁹	1.0×10^4	2.7 x 10 ⁻⁷
Sr-91	1 0 x 10 ¹	27 x 10 ⁻¹⁰	10 x 10 ⁵	27 x 10 ⁻⁶
Sr-92	1 0 x 10 ¹	2.7 x 10 ⁻¹⁰	10×10^6	2.7×10^{-5}
Tritium (1)				•
T (H-3)	10×10^6	2.7 x 10 ⁻⁵	1.0 x 10 ⁹	2.7×10^{-2} .
Tantalum (73)	4		·	
Ta-178 (long-lived)	10 x 10 ¹	2 7 x 10 ⁻¹⁰	1.0×10^6	2.7 x 10 ⁻⁵
Ta-179	1.0×10^3	2 7 x 10 ⁻⁸	10 x 10 ⁷	27 x 10 ⁻⁴
Ta-182	10 x 10 ¹	2 7 x 10 ⁻¹⁰	1 0 x 10 ⁴	2.7×10^{-7}
Terbium (65)				
Tb-157	10×10^4	27 x 10 ⁻⁷	1.0×10^7	2.7 x 10 ⁻⁴
Tb-158	1.0×10^{1}	2.7×10^{-10}	10×10^6	27 x 10 ⁻⁵
Tb-160	1.0×10^{1}	2 7 x 10 ⁻¹⁰	10 x 10 ⁶	27 x 10 ⁻⁵
Technetium (43)			, '	-
Tc-95m	1 0 x 10 ¹	27 x 10 ⁻¹⁰	1.0×10^6	2.7 x 10 ⁻⁵
Tc-96	1.0×10^{1}	2 7 x 10 ⁻¹⁰	10 x 10 ⁶	27 x 10 ⁻⁵
Tc-96m	1.0×10^{3}	2 7 x 10 ⁻⁸	10 x 10 ⁷	2.7 x 10 ⁻⁴
Tc-97	10×10^3	27 x 10 ⁻⁸	1.0 x 10 ⁸	2.7 x 10 ⁻³
Tc-97m	10×10^3	27 x 10 ⁻⁸	1.0×10^7	2.7 x 10 ⁻⁴
Tc-98	1 0 x 10 ¹	27 x 10 ⁻¹⁰	1.0×10^6	2.7 x 10 ⁻⁵
Tc-99	1.0×10^4	2.7×10^{-7}	1.0×10^{7}	2.7 x 10 ⁻⁴

Tc-99m	1.0×10^2	2 7 x 10 ⁻⁹	1.0 x 10 ⁷	27 x 10 ⁻⁴
Tellurium (52)				
Te-121	1 0 x 10 ¹	2.7 x 10 ⁻¹⁰	1.0×10^6	27 x 10 ⁻⁵
Te-121m	1.0×10^{2}	27 x 10 ⁻⁹	10 x 10 ⁵	2 7 x 10 ⁻⁶
Te-123m	1.0×10^{2}	2.7 x 10 ⁻⁹	1.0×10^7	27 x 10 ⁻⁴
Te-125m	1.0×10^{3}	2.7 x 10 ⁻⁸	1.0×10^{7}	2.7 x 10 ⁻⁴
Te-127	1.0×10^3	27 x 10 ⁻⁸	10 x 10 ⁶	27 x 10 ⁻⁵
Te-127m	1.0×10^3	27 x 10 ⁻⁸	1.0×10^7	2.7 x 10 ⁻⁴
Te-129	1.0×10^2	2.7 x 10 ⁻⁹	1.0×10^6	27 x 10 ⁻⁵
Te-129m	1.0×10^{3}	27 x 10 ⁻⁸	10×10^6	27 x 10 ⁻⁵
Te-131m	1.0 x 10 ¹	2 7 x 10 ⁻¹⁰	1.0×10^6	27 x 10 ⁻⁵
Te-132	10×10^2	2.7 x 10 ⁻⁹	10 x 10 ⁷	2.7 x 10 ⁻⁴
Thorium (90)				
Th-227	10 x 10 ¹	2.7 x 10 ⁻¹⁰	10×10^4	2 7 x 10 ⁻⁷
Th-228 ^a	1.0	2.7 x 10 ⁻¹¹	1.0×10^{4}	2.7 x 10 ⁻⁷
Th-229 ^a	1.0	2.7 x 10 ⁻¹¹	1.0×10^{3}	2.7 x 10 ⁻⁸
Th-230	1 0	2.7 x 10 ⁻¹¹	10×10^4	2.7 x 10 ⁻⁷
Th-231	10×10^{3}	2 7 x 10 ⁻⁸	1.0×10^{7}	2.7 x 10 ⁻⁴
Th-232	10 x 10 ¹	2 7 x 10 ⁻¹⁰	1.0×10^4	2 7 x 10 ⁻⁷
Th-234 ^a	1.0×10^{3}	2.7 x 10 ⁻⁸	1.0×10^{5}	2.7 x 10 ⁻⁶
Th (nat) ^a	1.0	2 7 x 10 ⁻¹¹	10×10^3	2.7 x 10 ⁻⁸
Tıtanıum (22)				
Tı-44	10 x 10 ¹	2 7 x 10 ⁻¹⁰	10 x 10 ^s	27 x 10 ⁻⁶
Thallium (81)		,		
T1-200	10 x 10 ¹	2.7 x 10 ⁻¹⁰	1.0 x 10 ⁶	2 7 x 10 ⁻⁵
T1-201	10×10^2	2.7 x 10 ⁻⁹	1.0 x 10 ⁶	2 7 x 10 ⁻⁵
TI-202	1.0×10^{2}	27 x 10 ⁻⁹	1.0×10^6	2.7 x 10 ⁻⁵
TI-204	1 0 x 10 ⁴	27 x 10 ⁻⁷	10×10^4	2.7 x 10 ⁻⁷
Thulium (69)	•			
Tm-167	1.0×10^{2}	2.7 x 10 ⁻⁹	10×10^6	2 7 x 10 ⁻⁵
Tm-170	1.0×10^3	2 7 x 10 ⁻⁸	1 0 x 10 ⁶	2.7 x 10 ⁻⁵
Tm-171	1.0×10^4	2.7 x 10 ⁻⁷	10 x 10 ⁸	2 7 x 10 ⁻³

RADIATION SAFETY 4731.0422

				() rr
Uranıum (92)				
U-230 (fast lung absorption) ^{a,b}	1.0 x 10 ¹	27 x 10 ⁻¹⁰	1 0 x 10 ⁵	2.7 x 10 ⁻⁶
U-230 (medium lung absorption) ^c	1 0 x 10 ¹	2 7 x 10 ⁻¹⁰	1.0 x 10 ⁴	2 7 x 10 ⁻⁷
U-230 (slow lung absorption) ^d	1.0 x 10 ¹	27 x 10 ⁻¹⁰	1.0 x 10 ⁴	2.7 x 10 ⁻⁷
U-232 (fast lung absorption) ^{a,b}	10 ,	2.7 x 10 ⁻¹¹	1.0 x 10 ³	27 x 10 ⁻⁸
U-232 (medium lung absorption) ^c	1 0 x 10 ¹	2.7 x 10 ⁻¹⁰	1.0 x 10 ⁴ '	27 x 10 ⁻⁷
U-232 (slow lung absorption) ^d	1 0 x 10 ¹	27 x 10 ⁻¹⁰	1.0 x 10 ⁴	2.7 x 10 ⁻⁷
U-233 (fast lung, absorption) ^b	1 0 x 10 ¹	2.7 x 10 ⁻¹⁰	1 0 x 10 ⁴	2 7 x 10 ⁻⁷
U-233 (medium lung absorption) ^c	10×10^2	2 7 x 10 ⁻⁹	1 0 x 10 ⁵	2 7 x 10 ⁻⁶
U-233 (slow lung absorption) ^d	1 0 x 10 ¹	2.7 x 10 ⁻¹⁰	1 0 x 10 ⁵	27 x 10 ⁻⁶
U-234 (fast lung absorption) ^b	1 0 x 10 ¹	2 7 x 10 ⁻¹⁰	1 0 x 10 ⁴	2.7 x 10 ⁻⁷
U-234 (medium lung absorption) ^c	1.0×10^2	2.7 x 10 ⁻⁹	10 x 10 ⁵	27 x 10 ⁻⁶
U-234 (slow lung absorption) ^d	10 x 10 ¹	27 x 10 ⁻¹⁰	10 x 10 ⁵	2.7 x 10 ⁻⁶
U-235 (all lung absorption types) ^{a,b,c,d}	1 0 x 10 ¹	2 7 x 10 ⁻¹⁰	1 0 x · 10 ⁴	27 x 10 ⁻⁷ .
U-236 (fast lung absorption) ^b	1 0 x 10 ¹	2.7 x 10 ⁻¹⁰	1.0 x 10 ⁴ ,	2.7 x 10 ⁻⁷
U-236 (medium lung absorption) ^c	1 0 x 10 ²	2.7 x 10 ⁻⁹	1 0 x 10 ⁵	27 x 10 ⁻⁶
U-236 (slow lung absorption) ^d	1 0 x 10 ¹	27 x 10 ⁻¹⁰	10 x 10 ⁴	2.7 x 10 ⁻⁷
U-238 (all lung absorption types) a,b,c,d	1.0 x 10 ¹	2.7 x 10 ⁻¹⁰	1.0 x 10 ⁴	2.7 x 10 ⁻⁷
U (nat) ^a	1.0	27 x 10 ⁻¹¹	1.0×10^{3}	2.7 x 10 ⁻⁸
U (enriched to 20% or less) ^c		2 7 x 10 ⁻¹¹	1 0 x 10 ³	2.7 x 10 ⁻⁸
U (dep)	1.0	2.7 x 10 ⁻¹¹	1.0×10^{3}	2.7×10^{-8}
		=		.

Vanadıum (23)				
V-48	1.0 x 10 ¹	2.7 x 10 ⁻¹⁰	1.0 x 10 ⁵	27 x 10 ⁻⁶
V-49	1.0×10^4	2.7×10^{-7}	1.0×10^7	27 x 10 ⁻⁴
,	10 X 10 ,	2.7 K 10	1 0 K 10	27 10
Tungsten (74)				
W-178	$1 \ 0 \ x \ 10^{1}$	2 7 x 10 ⁻¹⁰	10×10^6	2 7 x 10 ⁻⁵
W-181	$1.0 \text{ x}^{1}10^{3}$	27 x 10 ⁻⁸	1.0×10^7	2 7 x 10 ⁻⁴
W-185	1.0×10^4	27 x 10 ⁻⁷	10×10^{7}	27 x 10 ⁻⁴
W-187	1.0×10^{2}	27 x 10 ⁻⁹	10×10^6	2 7 x 10 ⁻⁵
W-188	10×10^{2}	2.7 x 10 ⁻⁹	10×10^{5}	2.7 x 10 ⁻⁶
Xenon (54)				
Xe-122	1.0×10^{2}	2.7 x 10 ⁻⁹	10 x 10 ⁹	27 x 10 ⁻²
Xe-123	1.0×10^{2}	2.7×10^{-9}	1.0×10^{9}	2.7×10^{-2}
Xe-127	1.0×10^3	2.7×10^{-8}	1 0 x 10 ⁵	2.7×10^{-6}
Xe-131m	1.0×10^4	2.7×10^{-7}	1.0×10^4	2.7×10^{-7}
Xe-133	1.0×10^3	27 x 10 ⁻⁸	1.0×10^4	2.7×10^{-7}
Xe-135	1.0×10^{3}	2.7×10^{-8}	1.0×10^{10}	2.7×10^{-1}
,				
Yttrium (39)				
Y-87	1.0×10^{1}	2.7×10^{-10}	10×10^{6}	2.7 x 10 ⁻⁵
Y-88	10 x 10 ¹	2.7×10^{-10}	1.0×10^6	2 7 x 10 ⁻⁵
Y-90	10×10^{3}	27 x 10 ⁻⁸	10×10^{5}	2.7 x 10 ⁻⁶
Y-91	1.0×10^3	2 7 x 10 ⁻⁸	10×10^6	27 x 10 ⁻⁵
Y-91m '	$1.0 \text{ x}^3 10^2$	2.7 x 10 ⁻⁹	10×10^{6}	27 x 10 ⁻⁵
Y-92	$1 \ 0 \ x \ 10^2$	2.7 x 10 ⁻⁹	10×10^{5}	2 7 x 10 ⁻⁶
Y-93	10×10^{2}	27 x 10 ⁻⁹	$1 \ 0 \ x \ 10^{5}$	2 7 x 10 ⁻⁶
,				
Ytterbium (70)				
Yb-169	1.0×10^{2}	2.7 x 10 ⁻⁹	1.0×10^7	27 x 10 ⁻⁴
Yb-175	10×10^{3}	27 x 10 ⁻⁸	1.0×10^7	27 x 10 ⁻⁴
Zinc (30)				
Zn-65	1.0 x 10 ¹	2.7×10^{-10}	10×10^6	2.7 x 10 ⁻⁵
Zn-69	10×10^4	2.7 x 10 ⁻⁷	10 x 10 ⁶	2.7 x 10 ⁻⁵
Zn-69m	10×10^{2}	2.7 x 10 ⁻⁹	10×10^6	2.7 x 10 ⁻⁵

249

RADIATION SAFETY 4731.0422

Zirconium (40)	,		•	
Zr-88	10×10^{2}	2.7 x 10 ⁻⁹	1.0×10^6	27 x 10 ⁻⁵
Zr-93ª	1.0×10^{3}	27 x 10 ⁻⁸	10 x 10 ⁷ ''	27 x 10 ⁻⁴
Zr-95	1.0×10^{1}	27 x 10 ⁻¹⁰	1.0×10^6	27 x 10 ⁻⁵
Zr-97 ^a	10 x 10 ¹	2.7 x 10 ⁻¹⁰	10 x 10 ⁵	2.7 x 10 ⁻⁶
^a Parent nuclides an	d their progeny in	cluded in secular	equilibrium are l	isted in the follow-
Sr-90	Y-90			
Zr-93	Nb-93m			
Zr-97	Nb-97			-
Ru-106	Rh-106			
Cs-137	Ba-137m		1	
Ce-134	La-134			
Ce-144	Pr-144			-
Ba-140	La-140 ,			
B ₁ -212	Tl-208(0 36), P	o-212(0 64)		
Pb-210	B1-210, Po-210		, •	
Pb-212	B1-212, T1-208	(0.36), Po-212 (0).64)	
Rn-220	Po-216	•		
Rn-222	Po-218, Pb-214	, B1-214, Po-214	. •	;
Ra-223	Rn-219, Po-215	5, Pb-211, B1-211	, TI-207	
Ra-224	Rn-220, Po-216	6, Pb-212, B1-212	; T1-208 (0 36), P	o-212 (0 64)
Ra-226	Rn-222, Po-218	8, Pb-214, B1-214	, Po-214, Pb-210,	, B1-210, Po-210
Ra-228	Ac-228	,		
Th-226	Ra-222, Rn-218	3, Po-214		
Th-228	Ra-224, Rn-220 (0 64)), Po-216, Pb-212	2, B1-212, Tl-208	(0 36), Po-212
Th-229	Ra-225, Ac-225	5, Fr-221, At-217	, B1-213, Po-213,	Pb-209
Th (nat)	Ra-228, Ac-228 Tl-208 (0.36), I		4, Rn-220, Po-216	6, Pb-212, B 1-212,
Th-234	Pa-234m	•		
U-230 .	Th-226, Ra-222	2, Rn-218, Po-214	4 .	-
U-232 ` ;	Th-228, Ra-224 Po-212 (0 64)	l, Rn-220, Po-210	6, Pb-212, B i-212	, Tl-208 (0 36),
U-235	Th-231		·	

Th-234, Pa-234m

U-238

250

4731.0422 RADIATION SAFETY

U (nat)	Th-234, Pa-234m, U-234, Th-230, Ra-226, Rn-222, Po-218, Pb-214, B1-214, Po-214, Pb-210, B1-210, Po-210
U-240	Np-240m
Np-237	Pa-233
Am-242m	Am-242
Am-243	Np-239

^bThese values apply only to compounds of uranium that take the chemical form of UF₆, UO₂F₂ and UO₂(NO₃)₂ in both normal and accident conditions of transport

Statutory Authority: MS s 144 1202, 144.1203

History: 32 SR 831

4731.0423 DETERMINATION OF A_1 AND A_2 .

Subpart 1 **Generally.** Values of A_1 and A_2 for individual radionuclides, which are the bases for many activity limits elsewhere in this chapter, are given in part 4731.0422, subpart 1a. The curie (C1) values specified are obtained by converting from the Terabecquerel (TBq) values. The Terabecquerel values are the regulatory standard. The curie values are for information only and are not intended to be the regulatory standard. Where values of A_1 and A_2 are unlimited, it is for radiation control purposes only. For nuclear criticality safety, some materials are subject to controls placed on fissile material

- Subp 2 Individual radionuclides; not listed in part 4731.0422, subpart 1a. For individual radionuclides whose identities are known, but which are not histed in part 4731 0422, subpart 1a, the A_1 and A_2 values contained in subpart 6 may be used Otherwise, the licensee shall obtain prior commissioner, NRC, or agreement state approval of the radionuclides not listed in part 4731.0422, subpart 1a, before shipping the material
- Subp. 2a. Individual radionuclides; not listed in part 4731.0422, subpart 3. For individual radionuclides whose identities are known, but which are not listed in part 4731 0422, subpart 3, the exempt material activity concentration and exempt consignment activity values contained in subpart 6 may be used. Otherwise, the licensee shall obtain prior commissioner, NRC, or agreement state approval of the exempt material activity concentration and exempt consignment activity values for radionuclides not listed in part 4731 0422, subpart 3, before shipping the material
- Subp. 2b **Prior approval.** The licensee must submit requests for prior approval, described under subparts 2 and 2a, to the commissioner, NRC, or agreement state, according to this chapter
- Subp 3. Radioactive decay chain. In the calculations of A_1 and A_2 for a radionuclide not in part 4731 0422, subpart 1a, a single radioactive decay chain, in which radionuclides are present in their naturally occurring proportions and in which no daughter nuclide has a half-life longer than ten days or longer than that of the parent nuclide, shall be considered as a single radionuclide. The activity to be taken into account and the A_1 and A_2 value to be applied shall be those corresponding to the parent nuclide of the chain. In the case of radioactive decay chains in which any daughter nuclide has a half-life longer than ten days or greater than that of the parent radionuclide, the parent and those daughter radionuclides shall be considered as mixtures of different radionuclides.

 $^{^{\}circ}$ These values apply only to compounds of uranium that take the chemical form of UO_3 , UF_4 , UCl_4 and hexavalent compounds in both normal and accident conditions of transport

^dThese values apply to all compounds of uranium other than those specified in notes b and c of this table

eThese values apply to unirradiated uranium only

Subp 4 Radionuclide mixture. For mixtures of radionuclides whose identities and respective activities are known, the following conditions apply

A For special form radioactive material, the maximum quantity transported in a Type A package

$$\sum_{i} \frac{B(i)}{A_1(i)} \leq 1$$

where B(1) is the activity of radionuclide 1 and A₁(1) is the A₁ value for radionuclide 1

B For normal form radioactive material, the maximum quantity transported in a Type A package

$$\sum_{\mathbf{A}} \frac{\mathrm{B}\left(\mathbf{1}\right)}{\mathrm{A}_{2}\left(\mathbf{i}\right)} \leq 1$$

where B(1) is the activity of radionuclide 1 and $A_2(1)$ is the A_2 value for radionuclide 1

C. Alternatively, an A₁ value for mixtures of special form material may be determined as follows

$$A_1$$
 for mixture $=\frac{1}{\sum_{i}\frac{f(i)}{A_1(i)}}$

where f(i) is the fraction of activity of radionuclide i in the mixture and $A_1(i)$ is the appropriate A_1 value for radionuclide i

D Alternatively, the ${\bf A_2}$ value for mixtures of normal form material may be determined as follows

A₂ for mixture =
$$\frac{1}{\sum_{i} \frac{f(i)}{A_2(i)}}$$

where f(1) is the fraction of activity of radionuclide 1 in the mixture and $A_2(1)$ is the appropriate A_2 value for radionuclide 1

E The exempt activity concentration for mixtures of radionuclides may be determined as follows:

Exempt activity concentration for mixture =
$$\frac{1}{\sum_{i} \frac{f(i)}{[A](i)}}$$

where f(1) is the fraction of activity concentration of radionuclide 1 in the mixture, and [A] is the activity concentration for exempt material containing radionuclide 1

F The activity limit for an exempt consignment for mixtures of radionuclides may be determined as follows.

Exempt consignment activity limit for mixture
$$=\frac{1}{\sum\limits_{i}\frac{f(i)}{A(i)}}$$

where f(1) is the fraction of activity of radionuclide 1 in the mixture, and A is the activity limit for exempt consignments for radionuclide 1.

Subp. 5. Activities unknown. When the identity of each radionuclide is known, but the individual activities of some of the radionuclides are not known, the radionuclides may be grouped and the lowest A_1 or A_2 value, as appropriate, for the radionuclides m each group may be used in applying the formulas in subpart 4. Groups may be based on the total alpha activity and the total beta/gamma activity when these are known, using the lowest A_1 or A_2 values for the alpha emitters and beta/gamma emitters

Subp 6. General values for A, and A,.

• •	, A_1	,	A_2	
Contents	(TBq)	(C1)	(TBq)	(C1)
Only beta- or gamma-emitting radionuclides are known to be present	1 x 10 ⁻¹	27 x 10 ⁰	2 x 10 ⁻²	5.4 x 10 ⁻¹
Only alpha-emitting radionuclides are known to be present	2 x 10 ⁻¹	5.4 x 10°	9 x 10 ⁻⁵	2.4 x 10 ⁻³
No relevant data are available	1 x 10 ⁻³	27 x 10 ⁻²	9 x 10 ⁻⁵	2 4 x 10 ⁻³
Contents	Activity concentration for exempt material (Bq/g)	Activity concentration for exempt material (Ci/g)	Activity limits for exempt consignments (Bq)	Activity limits for exempt consignments (C1)
Only beta- or gamma-emitting radionuclides are known to be present	1 x 10 ¹	27 x 10 ⁻¹⁰	1 x 10 ⁴	2.7 × 10 ⁻⁷
Only alpha-emitting radionuclides are known to be present	1 x 10 ⁻¹	2.7 x 10 ⁻¹²	1 x 10 ³	2 7 x 10 ⁻⁸
No relevant data are available	1 x 10 ⁻¹	2.7 x 10 ⁻¹²	1 x 10 ³	27 x 10 ⁻⁸
Statutany Anthonity	MC - 144 1202	144 1202	· ·	

Statutory Authority: MS s 144 1202, 144.1203

History: 32 SR 831

4731.0455 QUALITY ASSURANCE FOR TRANSPORTATION PACKAGES.

The licensee, certificate holder, and applicant for a certificate of compliance must comply with the requirements for quality assurance for transportation packages in Code of Federal Regulations, title 10, part 71, subpart H.

Statutory Authority: MS s 144 1202; 144 1203

History: 32 SR 831

4731.0610 AUTHORIZED USE OF SPECIAL NUCLEAR MATERIAL.

Subpart 1 **Authority under license.** A licensee must confine the licensee's possession and use of special nuclear material to the locations and purposes authorized m the license Except as otherwise provided in the license, a license issued under this chapter carries with it the right to receive title to, own, acquire, receive, possess, and use special nuclear material. Preparation for shipment and transport of special nuclear material must be according to parts 4731.0400 to 4731 0455

[For text of subp 2, see MR.] .

Statutory Authority: MS s 144.1202, 144.1203

History: 32 SR 831

4731.0780 FINANCIAL ASSURANCE AND RECORD KEEPING FOR DECOM-MISSIONING.

[For text of subps 1 and 2, see M.R.]

Subp 3 Between ten mCi and 100 mCi.

- A An applicant for a specific license authorizing possession and use of quantities of source material greater than ten milhcuries (370 MBq) but less than or equal to 100 millicuries (37 GBq) in a readily dispersible form must.
 - (1) submit a decommissioning funding plan according to subpart 4, or
- (2) submit a certification that financial assurance for decommissioning has been provided in the amount of \$225,000, using one of the methods described under subpart 5. The certification may state that the appropriate assurance will be obtained after the application has been approved and the license issued but before the receipt of licensed material.
- B. If an applicant defers execution of the financial instrument until after the license has been issued, a signed original of the financial instrument obtained to satisfy the requirements of subpart 5 must be submitted to the commissioner before receipt of hierarchial
- C If an applicant does not defer execution of the financial instrument, the applicant must submit to the commissioner, as part of the certification, a signed original of the financial instrument obtained to satisfy the requirements of subpart 5
 - D A holder of a specific license:
- (1) issued on or after July 27, 1990, which is covered by subpart 1 or 2, shall provide financial assurance for decommissioning according to this part, and
- (2) issued before July 27, 1990, and of a type described in subpart 1 shall submit a decommissioning funding plan as described in subpart 5 or a certification of financial assurance for decommissioning in an amount at least equal to \$1,125,000 according to this part. If the licensee submits the certificate of financial assurance rather than a decommissioning funding plan, the licensee shall include a decommissioning funding plan in any application for license renewal. Licensees required to submit the \$1,125,000 amount must do so by December 2, 2004.

4731.0780 RADIATION SAFETY

[For text of subps 4 to 6, see MR]

Statutory Authority: MS s 144.1202, 144.1203

History: 32 SR 831

4731.1010 POSTING WORKER NOTICES.

[For text of subpart 1, see MR.]

Subp. 2. Notice to employees. Each licensee and each applicant for a specific license must prominently post a MDH Form 3, "Notice to Employees," provided by the commissioner A copy of any revision of the Notice to Employees must be posted within 30 days of receiving the revised notice from the commissioner Copies of the Notice to Employees may be obtained by writing to the Radioactive Materials Unit, Minnesota Department of Health, 625 Robert Street N, PO. Box 64975, St. Paul, MN 55164-0975

[For text of subps 3 and 4, see MR.]

Statutory Authority: MS s 144.1202, 144 1203

History: 32 SR 831

4731.2600 REPORTS; THEFT OR LOSS OF LICENSED MATERIAL.

Subpart 1 Telephone reports.

- A. A licensee must report by telephone as follows:
- (1) immediately after its occurrence becomes known to the licensee, any lost, stolen, or missing licensed material in an aggregate quantity equal to or greater than 1,000 times the quantity under part 4731 2800, under such circumstances that it appears to the licensee that an exposure could result to persons in unrestricted areas, or
- (2) within 30 days after an occurrence of any lost, stolen, or missing licensed material becomes known to the licensee, all licensed material in a quantity greater than ten times the quantity under part 4731.2800 that is still missing at the time of the report.

[For text of item B, see M.R.]

[For text of subps 2 to 5, see M.R.]

Statutory Authority: MS s 144.1202, 144 1203

History: 32 SR 831

4731.2800 QUANTITIES OF LICENSED MATERIAL REQUIRING LABELING.

[For text of subps 1 and 2, see MR]

Subp 3. Quantities requiring labeling. The following quantities of licensed material require labeling.

Radionuclide	Abbreviation	Quantity (µC1)
Hydrogen-3	H-3	1,000
Beryllium-7	Be-7	1,000
Beryllium-10	Be-10	1
Carbon-11	C-11	1,000
Carbon-14	C-14	100
Fluorine-18	F-18	1,000
Sodium-22	Na-22	10

255	RADIATION SAFETY	4731.2800
Sodium-24	Na-24	· · · 100
Magnesium-28	Mg-28	- 100
Aluminum-26	Al-26	10
Silicon-31	S1-31	1,000
Silicon-32	S1-32	1
Phosphorus-32	P-32	10
Phosphorus-33	P-33 .	100
Sulfur-35	S-35	100
Chlorine-36	Cl-36	. 10
Chlorine-38	Cl-38	1,000
Chlorine-39	Cl-39	1,000
Argon-39	Ar-39	1,000
Argon-41	Ar-41	1,000
Potassium-40	K-40	100
Potassium-42	K-42	1,000
Potassium-43	. K-43	1,000
Potassium-44	K-44	1,000
Potassium-45	; K-45	1,000
Calcium-41	Ca-41	100
Calcium-45	Ca-45	100
Calcium-47	Ca-47	100
Scandium-43	Sc-43	1,000
Scandium-44m	Sc-44m	100
Scandium-44	Sc-44	100
Scandium-46	Sc-46	10
Scandium-47	Sc-47	100
Scandium-48	Sc-48	100
Scandium-49	Sc-49	1,000
Tıtanıum-44	Tı-44	4

4731.2800 RADIATION SAFETY		256
Tıtanium-45	T1-45	1,000
Vanadium-47	V-47	1,000
Vanadıum-48	V-48	100
Vanadıum-49	V-49	1,000
Chromium-48	Cr-48	1,000
Chromium-49	Cr-49	1,000
Chromium-51	Cr-51	, 1,000
Manganese-51	Mn-51	1,000
Manganese-52m	Mn-52m	1,000
Manganese-52	Mn-52	100
Manganese-53	Mn-53	1,000
Manganese-54	Mn-54	100
Manganese-56	Mn-56	1,000
Iron-52	Fe-52	100
Iron-55	Fe-55	100
Iron-59	Fe-59	10
Iron-60	Fe-60	1
Cobalt-55	Co-55	100
Cobalt-56	Co-56	. 10
Cobalt-57	Co-57	100
Cobalt-58m	Co-58m	1,000
Cobalt-58	Co-58	100
Cobalt-60m	Co-60m	1,000
Cobalt-60	Co-60	1
Cobalt-61	Co-61	1,000
Cobalt-62m	Co-62m	1,000
Nickel-56	N1-56	100
Nickel-57	N1-57	100
Nickel-59	N1-59	100
Nıckel-63	N1-63	100
Nickel-65	N1-65	1,000
Nickel-66	Ni-66	10

257	RADIATION SAFETY	4731.2800
Copper-60	Cu-60	1,000
Copper-61	Cu-61	1,000
Copper-64	Cu-64	1,000
Copper-67	Cu-67	1,000
Zinc-62	Zn-62	100
Zinc-63	Zn-63	1,000
Zinc-65	Zn-65	10
Zinc-69m	Zn-69m	100
Zinc-69	Zn-69	1,000
Zinc-71m	Zn-71m	1,000
Zinc-72	Zn-72	100
Gallium-65	Ga-65	1,000
Gallium-66	Ga-66	100
Gallium-67	Ga-67	1,000
Gallium-68	Ga-68	1,000
Gallium-70	Ga-70	1,000
Gallium-72	Ga-72	100
Gallium-73	Ga-73	1,000
Germanium-66	Ge-66	1,00Ó
Germanium-67	Ge-67	1,000
Germanium-68	Ge-68	10
Germanium-69	Ge-69	1,000
Germanium-71	Ge-71	1,000
Germanium-75	Ge-75	1,000
Germanium-77	Ge-77	1,000
Germanium-78	Ge-78	1,000
Arsenic-69	As-69	1,000
Arsenic-70	As-70	1,000
Arsenic-71	A s-71	100
Arsenic-72	As-72	100
Arsenic-73	As-73	100
Arsenic-74	As-74	100

4731.2800 RADIATION SAFETY		258
Arsenic-76	As-76	100
Arsenic-77	As-77	100
Arsenic-78	As-78	1,000
Selenium-70	Se-70	1,000
Selenium-73m	Se-73m	1,000
Selemum-73	Se-73	100
Selemum-75	Se-75	100
Selenium-79	Se-79	100
Selenium-81m	Se-81m	1,000
Selenium-81	Se-81	1,000
Selenium-83	Se-83	1,000
Bromine-74m	Br-74m	1,000
Bromine-74	Br-74	1,000
Bromine-75	Br-75	1,000
Bromine-76	Br-76	100
Bromine-77	Br-77	1,000
Bromine-80m	Br-80m	1,000
Bromine-80	Br-80	1,000
Bromine-82	Br-82	100
Bromine-83	Br-83	, 1,000
Bromine-84	Br-84	1,000
Krypton-74	Kr-74	1,000
Krypton-76	Kr-76	1,000
Krypton-77	Kr-77	1,000
Krypton-79	Kr-79	1,000
Krypton-81	Kr-81	1,000
Krypton-83m	Kr-83m	1,000
Krypton-85m	Kr-85m	1,000
Krypton-85	Kr-85	1,000
Krypton-87	Kr-87	1,000
Krypton-88	Kr-88	1,000
Rubidium-79	R b-79	1,000
Rubidium-81m	Rb-81m	1,000

259	RADIATION SAFETY	4731.2800
Rubidium-81	Rb-81	1,000
Rubidium-82m	Rb-82m	1,000
Rubidium-83	Rb-83	100
Rubidium-84	Rb-84	100
Rubidium-86	Rb-86	100
Rubidium-87	Rb-87	100
Rubidium-88	Rb-88	1,000
Rubidium-89	Rb-89	1,000
Strontium-80	Sr-80 .	100
Strontium-81	Sr-81	1,000
Strontium-83	Sr-83	100
Strontium-85m	Sr-85m	1,000
Strontium-85	Sr-85	100
Strontium-87m	Sr-87m	1,000
Strontium-89	Sr-89	10
Strontium-90	Sr-90	0 1
Strontium-91	Sr-91	100
Strontium-92	Sr-92	100
Yttrium-86m	Y-86m	1,000
Yttrium-86	Y-86	100
	Y-87	100
•	Y-88	10
Yttrium-90m	Y-90m	1,000
Yttrium-90	Y-90	10
	Y-91m	1,000
	Y-91	10
	Y-92	100
	Y-93	100
Yttrium-94	Y-94	1,000
Yttrium-95	Y-95	1,000
	Zr-86	100
	Zr-88	· 10
Zircomum-89	Zr-89	100

4731.2800 RADIATION SAFETY		260
Zırconium-93	Zr-93	1
Zırconium-95	Zr-95	10
Zirconium-97	Zr-97	100
Niobium-88	Nb-88	1,000
Niobium-89m (66 mm)	Nb-89m	1,000
Niobium-89 (122 min)	Nb-89	1,000
Niobium-89	Nb-89	1,000
N10bium-90	Nb-90	100
Niobium-93m	Nb-93m	· 10
Niobium-94	Nb-94	£ 1
Niobium-95m	Nb-95m	100
Niobium-95	Nb-95	100
Niobium-96	Nb-96	100
Niobium-97	Nb-97	1,000
Niobium-98	Nb-98	1,000
Molybdenum-90	Mo-90	100
Molybdenum-93m	Mo-93m	100
Molybdenum-93	Mo-93	10
Molybdenum-99	Mo-99	100
Molybdenum-101	Mo-101	1,000
Technetium-93m	Tc-93m	1,000
Technetium-93	Tc-93	1,000
Technetium-94m	Tc-94m	1,000
Technetium-94	Tc-94	1,000
Technetium-96m	Tc-96m	1,000
Technetium-96	Tc-96	100
Technetium-97m	Tc-97m	100
Technetium-97	Tc-97	1,000
Technetium-98	Tc-98	. 10
Technetium-99m	Tc-99m	1,000
Technetium-99	Tc-99	100
Technetium-101	Tc-101	1,000
Technetium-104	Tc-104	1,000

261	RADIATION SAFETY	4731.2800
Ruthenium-94	Ru-94	1,000
Ruthenium-97	Ru-97	1,000
Ruthenium-103	Ru-103	100
Ruthenium-105	Ru-105	1,000
Ruthenium-106	Ru-106	1
Rhodium-99m	Rh-99m	1,000
Rhodium-99	Rh-99	100
Rhodium-100	Rh-100	100
Rhodium-101m	Rh-101m	1,000
Rhodium-101	Rh-101	10
Rhodium-102m	Rh-102m	10
Rhodium-102	Rh-102	10
Rhodium-103m	Rh-103m	1,000
Rhodium-105	Rh-105	100
Rhodium-106m	Rh-106m	1,000
Rhodium-107	Rh-107	1,000
Palladium-100	Pd-100	100
Palladium-101	Pd-101	1,000
Palladium-103	Pd-103	100
Palladium-107	Pd-107	10
Palladium-109	Pd-109	100
Silver-102	Ag-102	1,000
Silver-103	Ag-103	1,000
Sılver-104m	Ag-104m	1,000
Silver-104	Ag-104	1,000
Silyer-105	Ag-105	100
Silver-106m	Ag-106m	100
Silver-106	Ag-106	1,000
Silver-108m	Ag-108m	1
Silver-110m	Ag-110m	10
Silver-111	Ag-111	100
Silver-112	Ag-112	100
Silver-115	Ag-115	1,000

4731.2800 RADIATION SAFETY		262
Cadmium-104	Cd-104	1,000
Cadmium-107	Cd-107	1,000
Cadmium-109	Cd-109	1
Cadmium-113m	Cd-113m	0 1
Cadmium-113	Cd-113	100
Cadmium-115m	Cd-115m	10
Cadmium-115	Cd-115	100
Cadmium-117m	Cd-117m	1,000
Cadmium-117	Cd-117	1,000
Indium-109	In-109	1,000
Indium-110 (69.1 min)	In-110	1,000
Indium-110 (4.9h)	In-110	1,000
Indium-111	In-111	100
Indium-112	In-112	1,000
Indium-113m	In-113m	1,000
Indium-114m	In-114m	10
Indium-115m	In-115m	1,000
Indium-115	In-115	100
Indium-116m	In-116m	1,000
Indium-117m	In-117m	1,000
Indium-117	In-117	1,000
Indium-119m	In-119m	1,000
Tin-110	Sn-110	100
Tm-111	Sn-111	1,000
Tin-113	Sn-113	100
Tın-117m	Sn-117m	100
Tin-119m	Sn-119m	100
Tın-121m	Sn-121m	100
Tin-121	Sn-121	1,000
Tın-123m	Sn-123m	1,000
Tin-123	Sn-123	10
Tin-125	Sn-125	10
Tin-126	Sn-126	10
Tin-127	Sn-127	1,000

263	RADIATION SAI	FETY 4731.2800
Tin-128	Sn-128	1,000
Antimony-115	Sb-115	1,000
Antimony-116m	Sb-116m	1,000
Antimony-116	Sb-116	1,000
Antimony-117	Sb-117	1,000
Antimony-118m	Sb-118m	1,000
Antimony-119	Sb-119	1,000
Antimony-120 (16 min)	Sb-120	1,000
Antimony-120 (5 76d)	Sb-120	100
Antimony-122	Sb-122	100
Antımony-124m	Sb-124m	1,000
Antimony-124	Sb-124	10
Antimony-125	Sb-125	100
Antimony-126m	Sb-126m	1,000
Antimony-126	Sb-126	100
Antimony-127	Sb-127	100
Antimony-128 (10 4 min)	Sb-128	1,000
Antimony-128 (9 01h)	Sb-128	100
Antimony-129	Sb-129	100
Antimony-130	Sb-130	1,000
Antimony-131	Sb-131	1,000
Tellurium-116	Te-116	1,000
Tellurium-121m	Te-121m	10
Tellurium-121	Te-121	100
Tellurium-123m	Te-123m	10
Tellurium-123	Te-123	100
Tellurium-125m	Te-125m	10
Tellurium-127m	Te-127m	10
Tellurium-127	Te-127	1,000
Tellurium-129m	Te-129m	10
Tellurium-129	Te-129	1,000
Tellurium-131m	Te-131m	10
Tellurium-131	Te-131	100
Tellurium-132	Te-132	10

4731.2800 RADIATION SAFETY		264
Tellurium-133m	Te-133m	100
Tellurium-133	Te-133	1,000
Tellurium-134	Te-134	1,000
Iodine-120m	I-120m	1,000
Iodine-120	I-120	· 100
Iodine-121	I-121	1,000
Iodine-123	I-123	, 100
Iodine-124	I-124	. 10
Iodine-125	I-125	1
Iodine-126	I-126	1
Iodine-128	I-128	1,000
Iodine-129	I-129	1
Iodine-130	I-130	10
Iodine-131	I-131	1
Iodine-132m	I-132m	100
Iodine-132	I-132	, 100
Iodine-133	I-133	.10
Iodine-134	I-134	1,000
Iodme-135	I-135	100
Xenon-120	Xe-120	1,000
Xenon-121	Xe-121	1,000
Xenon-122	Xe-122	1,000
Xenon-123	Xe-123	1,000
Xenon-125	Xe-125	1,000
Xenon-127	Xe-127	1,000
Xenon-129m	Xe-129m	1,000
Xenon-131m	Xe-131m	1,000
Xenon-133m	Xe-133m	1,000
Xenon-133	Xe-133	1,000
Xenon-135m	Xe-135m	1,000
Xenon-135	Xe-135	1,000
Xenon-138	Xe-138	1,000
Cesium-125	Cs-125	1,000

265	RADIATION SAFETY	4731.2800
Cesium-127	Cs-127	1,000
Cessum-129	Cs-129	1,000
Cessum-130	Cs-130	1,000
Cesium-131	Cs-131	1,000
Cesium-132	Cs-132	· 100
Cesium-134m	Cs-134m	1,000
Cesium-134	Cs-134	10
Cesium-135m	Cs-135m	1,000
Cesium-135	, Cs-135	100
Cesium-136	Cs-136	10
Cesium-137	Cs-137	10
Cesium-138	Cs-138	1,000
Barium-126	Ba-126	1,000
Barium-128	Ba-128	100
Barium-131m	Ba-131m	1,000
Barium-131	Ba-131	100
Barium-133m	Ba-133m	100
Barium-133	Ba-133	100
Barium-135m	Ba-135m	100
Barium-139	Ba-139	1,000
Barium-140	Ba-140	100
Barium-141	Ba-141	1,000
Barium-142	Ba-142	1,000
Lanthanum-131	La-131	1,000
Lanthanum-132	La-132	.100
Lanthanum-135	La-135	1,000
Lanthanum-137	La-137	10
Lanthanum-138	La-138	100
Lanthanum-140	La-140	100
Lanthanum-141	La-141	100
Lanthanum-142	La-142	1,000
Lanthanum-143	La-143	1,000
Cerium-134	Ce-134	100

4731.2800 RADIATION SAFETY		266
Cerium-135	Ce-135	100
Cerium-137m	Ce-137m	100
Cerium-137	Ce-137	1,000
Cerium-139	Ce-139	. 100
Cerium-141	Ce-141	. 100
Cerium-143	Ce-143	100
Cerium-144	Ce-144	1
Praseodymium-136	Pr-136	1,000
Praseodymium-137	Pr-137	1,000
Praseodymium-138m	Pr-138m	1,000
Praseodymium-139	Pr-139	1,000
Praseodymium-142m	Pr-142m	1,000
Praseodymium-142	Pr-142	100
Praseodymium-143	Pr-143	100
Praseodymium-144	Pr-144	1,000
Praseodymium-145	Pr-145	100
Praseodymium-147	Pr-147	1,000
Neodymium-136	Nd-136	1,000
Neodymium-138	Nd-138	100
Neodymium-139m	Nd-139m	1,000
Neodymium-139	Nd-139	1,000
Neodymium-141	Nd-141	1,000
Neodymium-147	Nd-147	100
Neodymium-149	Nd-149	1,000
Neodymium-151	Nd-151	1,000
Promethium-141	Pm-141	1,000
Promethium-143	Pm-143	100
Promethium-144	Pm-144	10
Promethium-145	Pm-145	10
Promethium-146	Pm-146	1
Promethium-147	Pm-147	10
Promethium-148m	Pm-148m	10
Promethium-148	Pm-148	10

267	RADIATION SAFETY	4731.2800
Promethium-149	Pm-149	, 100
Promethium-150	Pm-150	1,000
Promethium-151	Pm-151	100
Samarıum-141m	Sm-141m	1,000
Samarium-141	Sm-141	1,000
Samarium-142	Sm-142	1,000
Samarium-145	Sm-145	100
Samarium-146	Sm-146	1
Samarium-147	Sm-147	100
Samarium-151	Sm-151	10
Samarium-153	Sm-153	100
Samarium-155	Sm-155	1,000
Samarium-156	Sm-156	1,000
Europium-145	Eu-145	100
Europium-146	Eu-146	100
Europium-147	Eu-147	100
Europium-148	Eu-148	10
Europium-149	Eu-149	100
Europium-150 (12 62h)	Eu-150	100
Europium-150 (34 2y)	Eu-150	1
Europium-152m	Eu-152m	100
Europium-152	Eu-152	1
Europium-154	Eu-154	1
Europium-155	Eu-155	10
Europium-156	Eu-156	100
Europium-157	Eu-157	100
Europium-158	Eu-158	1,000
Gadolinium-145	Gd-145	1,000
Gadolinium-146	Gd-146	10
Gadolinium-147	Gd-147	100
Gadolinium-148	Gd-148	0.001
Gadolinium-149	Gd-149	100
Gadolinium-151	Gd-151	10

4731.2800 RADIATION SAFETY		268
Gadolinium-152	Gd-152	100
Gadolimum-153	Gd-153	10
Gadolinium-159	Gd-159	100
Terbium-147	Tb-147	1,000
Terbium-149	Tb-149	100
Terbium-150	Tb-150	1,000
Terbium-151	Tb-151	100
Terbium-153	Tb-153	1,000
Terbium-154	Tb-154	100
Terbium-155	Tb-155	1,000
Terbium-156m (5 0h)	Tb-156m	1,000
Terbium-156m (24 4h)	Tb-156m	1,000
Terbium-156	Tb-156	100
Terbium-157	Tb-157	10
Terbium-158	Tb-158	1
Terbium-160	Tb-160	10
Terbium-161	Tb-161	100
Dysprosium-155	Dy-155	1,000
Dysprosium-157	Dy-157	1,000
Dysprosium-159	Dy-159	100
Dysprosium-165	Dy-165	1,000
Dysprosium-166	Dy-166	100
Holmium-155	Ho-155	1,000
Holmium-157	Ho-157	1,000
Holmium-159	Ho-159	1,000
Holmium-161	Ho-161	1,000
Holmium-162m	Ho-162m	1,000
Holmium-162	Ho-162	1,000
Holmium-164m	Ho-164m	1,000
Holmium-164	Ho-164	1,000
Holmium-166m	Ho-166m	1
Holmium-166	Ho-166	100
Holmium-167	Ho-167	1,000

269	RADIATION SAFETY	4731.2800
Erbium-161	Er-161	1,000
Erbium-165	Er-165	1,000
Erbium-169	Er-169	100
Erbium-171	Er-171	100
Erbium-172	Er-172	100
Thulium-162	Tm-162	1,000
Thulium-166	Tm-166	100
Thulium-167	Tm-167	100
Thulium-170	Tm-170	410
Thulium-171	Tm-171	10
Thulium-172	Tm-172	100
Thulium-173	Tm-173	100
Thulium-175	Tm-175	. 1,000
Ytterbium-162	Yb-162	1,000
Ytterbium-166	Yb-166	100
Ytterbium-167	Yb-167	1,000
Ytterbium-169	Yb-169	100
Ytterbium-175	Yb-175	100
Ytterbium-177	Yb-177	1,000
Ytterbium-178	Yb-178	1,000
Lutetium-169	Lu-169	100
Lutetium-170	Lu-170	100
Lutetium-171	Lu-171	100
Lutetium-172	Lu-172	100
Lutetium-173	Lu-173	. 10
Lutetium-174m	Lu-174m	10
Lutetium-174	Lu-174	10
Lutetium-176m	Lu-176m	1,000
Lutetium-176	Lu-176	100
Lutetrum-177m	Lu-177m	10
Lutefium-177	Lu-177	100
Lutetium-178m	Lu-178m	1,000
Lutetium-178	Lu-178	1,000

4731.2800 RADIATION SAFETY		270
Lutetium-179	Lu-179	1,000
Hafnium-170	Hf-170	100
Hafnium-172	Hf-172	1
Hafnium-173	Hf-173	1,000
Hafmum-175	Hf-175	100
Hafnium-177m	Hf-177m	1,000
Hafnium-178m	Hf-178m	0.1
Hafmum-179m	Hf-179m	10
Hafmum-180m	Hf-180m	1,000
Hafnium-181	Hf-181	. 10
Hafnium-182m	Hf-182m	1,000
Hafnium-182	Hf-182	0 1
Hafnium-183	Hf-183	1,000
Hafmum-184	Hf-184	100
Tantalum-172	Ta-172	1,000
Tantalum-173 .	Ta-173	1,000
Tantalum-174	Ta-174	1,000
Tantalum-175	Ta-175	1,000
Tantalum-176	Ta-176	100
Tantalum-177	Ta-177	1,000
Tantalum-178	Ta-178	1,000
Tantalum-179	Ta-179	100
Tantalum-180m	Ta-180m	1,000
Tantalum-180	Ta-180	100
Tantalum-182m	Ta-182m	1,000
Tantalum-182	Ta-182	10
Tantalum-183	Ta-183	100
Tantalum-184	Ta-184	100
Tantalum-185	Ta-185	1,000
Tantalum-186	Ta-186	1,000
Tungsten-176	W-176	. 1,000
Tungsten-177	W-177	. 1,000
Tungsten-178	W-178	1,000

271	RADIATION SAFETY	4731.2800
Tungsten-179	W-179	1,000
Tungsten-181	W -181	1,000
Tungsten-185	W-185	100
Tungsten-187	W-187	100
Tungsten-188	W -188	10
Rhemum-177	Re-177	1,000
Rhenium-178	Re-178	1,000
Rhemum-181	Re-181	1,000
Rhenium-182 (12 7h)	Re-182	1,000
Rhenium-182 (64 0h)	Re-182	100
Rhenium-184m	Re-184m	10
Rhenium-184	Re-184	100
Rhenrum-186m	Re-186m	10
Rhemum-186	Re-186	100
Rhenium-187	Re-187	1,000
Rhenium-188m	Re-188m	1,000
Rhenium-188	Re-188	,100
Rhenium-189	Re-189	100
Osmium-180	Os-180	1,000
Osmium-181	Os-181	1,000
Osmium-182	Os-182	100
Osmium-185	Os-185	100
Osmium-189m	Os-189m	1,000
Osmium-191m	Os-191m	1,000
Osmium-191	Os-191	100
Osmium-193	Os-193	100
Osmium-194	Os-194	· 1
Iridium-182	Ir-182	1,000
Iridıum-184	Ir-184	1,000
Iridium-185	Ir-185	1,000
Iridium-186	Ir-186	100
Iridium-187	Ir-187	1,000
Iridıum-188	Ir-188	100

4731.2800 RADIATION SAFETY		272
Iridium-189	Ir-189	100
Iridium-190m	Ir-190m	1,000
Iridium-190	Ir-190	100
Iridium-192 (73 8d)	Ir-192	1
Iridium-192m (1 4 min)	Ir-192m	10
Irıdıum-194m	Ir-194m	10
Irıdıum-194	Ir-194	100
Irıdıum-195m	Ir-195m	1,000
Iridium-195	Ir-195	1,000
Platinum-186	Pt-186	1;000
Platinum-188	Pt-188	100
Platinum-189	Pt-189	1,000
Platinum-191	Pt-191	. 100
Platinum-193m	Pt-193m	100
Platinum-193	Pt-193	1,000
Platinum-195m	Pt-195m	100
Platinum-197m	Pt-197m	1,000
Platinum-197	Pt-197	100
Platinum-199	Pt-199	1,000
Platinum-200	Pt-200	100
Gold-193	Au-193	1,000
Gold-194	Au-194	100
Gold-195	Au-195	10
Gold-198m	Au-198m	100
Gold-198	Au-198	100
Gold-199	Au-199	100
Gold-200m	Au-200m	100
Gold-200	Au-200	1,000
Gold-201	Au-201	1,000
Mercury-193m	Hg-193m	100
Mercury-193	Hg-193	1,000
Mercury-194	Hg-194	1
Mercury-195m	Hg-195m	100

273	RADIATION SAFETY	4731.2800
Mercury-195	Hg-195	1,000
Mercury-197m	Hg-197m	100
Mercury-197	Hg-197	1,000
Mercury-199m	Hg-199m	1,000
Mercury-203	Hg-203	100
Thallium-194m	Tl-194m	1,000
Thallium-194	Tl-194	1,000
Thallium-195	Tl-195	1,000
Thallium-197	TI-197	1,000
Thallium-198m	Tl-198m	1,000
Th'allıum-198	Tl-198	1,000
Thallium-199	Tl-199	1,000
Thallium-200	T1-200	1,000
Thallium-201	Tl-201	1,000
Thallium-202	Tl-202	100
Thallium-204	Tl-204	100
Lead-195m	Pb-195m	1,000
Lead-198	Pb-198	1,000
Lead-199	Pb-199	, 1,000
Lead-200	Pb-200	100
Lead-201	Pb-201	1,000
Lead-202m	Pb-202m	1,000
Lead-202	Pb-202	10
Lead-203	Pb-203	1,000
Lead-205	Pb-205	100
Lead-209	Pb-209	1,000
Lead-210	Pb-210	0.01
Lead-211	Pb-211	100
Lead-212	Pb-212	1
Lead-214	Pb-214	100
Bismuth-200	B1-200	1,000
Bismuth-201	B1-201	1,000
Bismuth-202	B ₁ -202	, ,1,000

4731.2800 RADIATION SAFETY		274
Bismuth-203	В1-203	100
Bismuth-205	B1-205	100
Bismuth-206	В1-206	100
Bismuth-207	В1-207	10
Bismuth-210m	B1-210m	0.1
Bismuth-210	Bi-210	1
Bismuth-212	B1-212	10
Bismuth-213	B1-213	10
Bismuth-214	В1-214	100
Polonium-203	Po-203	1,000
Polomum-205	Po-205	1,000
Polomum-207	Po-207	1,000
Polomum-210	Po-210	0.1
Astatine-207	At-207	100
Astatine-211	At-211	10
Radon-220	Rn-220	1
Radon-222	Rn-222	1
Francium-222	Fr-222	100
Francium-223	Fr-223	100
Radium-223	Ra-223	0 1
Radium-224	Ra-224	0.1
Radıum-225	Ra-225	0 1
Radium-226	Ra-226	0 1
Radıum-227	Ra-227	1,000
Radium-228	Ra-228	0 1
Actimum-224	Ac-224	1
Actinium-225	Ac-225	0 01
Actinium-226	Ac-226	0 1
Actinium-227	Ac-227	0.001
Actinium-228	Ac-228	1
Thorium-226	Th-226	10

275	RADIATION SAFETY	4731.2800
Thorium-227	Th-227	0 01
Thorium-228	Th-228	0.001
Thorium-229	Th-229	0.001
Thorium-230	Th-230	0 001
Thorium-231	Th-231	100
Thorium-232	Th-232	100
Thorium-234	Th-234	10
Thorium-natural	,	100
Protactinium-227	Pa-227	10
Protactinium-228	Pa-228	1
Protactinium-230	Pa-230	0.01
Protactinium-231	Pa-231	0 001
Protactinium-232	Pa-232	· 1
Protactinium-233	Pa-233	100
Protactinium-234	Pa-234	100
Uranıum-230	U-230	0.01
Uranium-231	U-231	100
Uranıum-232	U-232	0.001
Uranium-233	U-233	0.001
Uranıum-234	U-234	0.001
Uranium-235	U-235	0 001
Uranium-236	U-236	0 001
Uramum-237	U-237	100
Uranıunı-238	U-238	100
Uranium-239	U-239	1,000
Uranium-240	U-240	100
Uranıum-natural		100
Neptunium-232	Np-232	100
Neptunium-233	Np-233	1,000
Neptunium-234	Np-234	100
Neptunium-235	Np-235	100
Neptunium-236 (1.15x10 ⁵ y)	Np-236	0.001
Neptuniuni-236 (22 5h)	Np-236	1

4731.2800 RADIATION SAFETY		276
Neptunium-237	Np-237	0 001
Neptunium-238	Np-238	10
Neptunium-239	Np-239	100
Neptunium-240	Np-240	1,000
Plutonium-234	Pu-234	10
Plutonium-235	Pu-235	1,000
Plutonium-236	Pu-236	0 001
Plutonium-237	Pu-237	100
Plutonium-238	Pu-238	0 001
Plutonium-239	Pu-239	0 001
Plutonium-240	Pu-240	0 001
Plutonium-241	Pu-241	0 01
Plutonium-242	Pu-242	0.001
Plutonium-243	Pu-243	1,000
Plutonium-244	Pu-244	0 001
Plutonium-245	Pu-245	100
Americium-237	Am-237	1,000
Americium-238	Am-238	100
Americium-239	Am-239	1,000
Americium-240	Am-240	100
Americium-241	Am-241	0 001
Americium-242m	Am-242m	0.001
Americium-242	Am-242	10
Americium-243	Am-243	0 001
Americium-244m	Am-244m	100
Americium-244	Am-244	10
Americium-245	Am-245	1,000
Americium-246m	Am-246m	1,000
Americium-246	Am-246	1,000
Curium-238	Cm-238	100
Curium-240	Cm-240	. 01
Curium-241	Cm-241	1
Curium-242	Cm-242	0 01

277	RADIATION SAFETY	4731.2800
Curium-243	Cm-243	0 001
Curium-244	Cm-244	0 001
Curium-245	Cm-245	0.001
Curium-246	Cm-246	0 001
Curium-247	Cm-247	0 001
Curium-248	Cm-248	0.001
Curium-249	Cm-249	1,000
Berkelium-245	Bk-245	100
Berkelium-246	,Bk-246	100
Berkelium-247	Bk-247	0 001
Berkelium-249	Bk-249	0.1
Berkelium-250	Bk-250	10
Californium-244	Cf-244	100
Calıfornium-246	Cf-246	1
Californium-248	Cf-248	0.01
Californium-249	Cf-249	0 001
Californium-250	Cf-250	0 001
Californium-251	Cf-251	0.001
Californium-252	Cf-252	0 001
Californium-253	Cf-253,	0 1
Californium-254	Cf-254	0 001
Any alpha emitting radionuclide not listed above or mixtures or alpha emitters of unknown composition		0 001
Einsteinium-250	Es-250	100
Emsternum-251	Es-251	, 100
Einsteinium-253	Es-253	0 1
Einsteinium-254m	Es-254m	. 1
Einsteinium-254	Es-254	. 0 01
Fermium-252	Fm-252	ì
Fermium-253	Fm-253	1
Fermium-254	Fm-254	10
Fermium-255	Fm-255	1
Fermium-257	Fm-257	0 01

4731.2800 RADIATION SAFETY

Mendelevium-257 Md-257 10

Mendelevium-258 Md-258 0 01

Any radionuclide other than alpha emitter radionuclides not listed above or mixtures of beta emitters of unknown composition

0.01

278

Statutory Authority: MS s 144 1202; 144.1203

History: 32 SR 831

4731,3075 TERMS AND CONDITIONS OF LICENSES.

[For text of subps 1 and 2, see MR]

Subp 3. **Scope of license.** A person licensed by the commissioner under this chapter must confine the licensee's possession and use of radioactive material to the locations and purposes authorized in the license. Except as otherwise provided in the license, a license issued under parts 4731 3000 to 4731 7280 carries with it the right to receive, acquire, own, and possess radioactive material Preparation for shipment and transport of radioactive material must be according to parts 4731.0400 to 4731 0455

Subp 4 Bankruptcy.

A A general licensee required to register under part 4731 3215, subpart 3a, and a specific hoensee issued a license under this chapter must notify the commissioner, m writing, immediately following the filing of a voluntary or involuntary petition for bankruptcy under any chapter of United States Code, title 11, by or against:

[For text of substems (1) to (3), see M.R.]

[For text of stem B, see M.R.]

[For text of subps 5 to 7, see M.R.]

Subp 8 Security requirements for portable gauges. A portable gauge heensee must use a minimum of two independent physical controls that form tangible barriers to secure portable gauges from unauthorized removal, whenever portable gauges are not under the control and constant surveillance of the licensee

Statutory Authority: MS s 144 1202, 144 1203

History: 32 SR 831

4731.3080 FINANCIAL ASSURANCE AND RECORD KEEPING FOR DECOMMISSIONING.

Subpart 1 Decommissioning funding plan required.

A An applicant for a specific license authorizing the possession and use of unsealed radioactive material of half-life greater than 120 days and in quantities exceeding 10^5 times the applicable quantities under part 4731.3160 must submit a decommissioning funding plan according to subpart 5. A decommissioning funding plan must also be submitted when a combination of isotopes is involved, if R divided by 10^5 is greater than one (unity rule), where R is the sum of the ratios of the quantity of each isotope to the applicable value under part 4731 3160.

B. A holder of or an applicant for a specific license authorizing possession and use of sealed sources or plated foils of half-life greater than 120 days and in quantities exceeding 10^{12} times the applicable quantities set forth m part 4731 3160 or, when a combination of isotopes is involved, if R, as defined in subpart 1, divided by 10^{12} is greater than 1, must submit a decommissioning funding plan as described m subpart 5

Subp 2. Plan or financial assurance required.:

A A holder of or an applicant for a specific license authorizing possession and use of radioactive material of half-life greater than 120 days and in quantities specified in subpart 4 must.

[For text of subitems (1) and (2), see M.R.]
[For text of items B and C, see M.R.]
[For text of subps 3 to 7, see M.R.]

Statutory Authority: MS s 144.1202; 144 1203

History: 32 SR 831

4731.3215 GENERAL LICENSE; DETECTING, MEASURING, GAUGING, CONTROLLING, AND OTHER DEVICES.

[For text of subps 1 and 2, see M R.]

Subp. 3. **Requirements.** A person who acquires, receives, possesses, uses, or transfers radioactive inaterial in a device according to the general license issued under subpart 1 must:

[For text of items A to P, see MR]

Q report changes to the mailing address for the location of use, including change means of the general licensee, to the commissioner within 30 days of the effective date of the change. For a portable device, a report of address change is required only for a change in the device's primary place of storage, and

R not hold devices that are not in use for more than two years. If a device with shutters is not being used, the shutters must be locked in the closed position. The testing required under item B need not be performed during the period of storage only. When a device is put back into service or transferred to another person, and has not been tested within the required test interval, the device must be tested for leakage before use or transfer and the shutters must be tested before use. Devices kept in standby for future use are excluded from the two-year time limit if the general licensee performs quarterly physical inventories of these devices while they are in standby

Subp 3a. Registration of generally licensed devices.

- A A person to whom subpart 3 applies shall register generally licensed devices according to items B and C These devices contain:
 - (1) at least ten millicuries (370 MBq) of cesium-137,
 - (2) at least 0.1 millicurie (3 7 MBq) of strontium-90;
 - (3) at least one millicurie (37 MBq) of cobalt-60, or
- (4) at least one millicurie (37 MBq) of americium-241 or any other transurame (any other element with an atomic number greater than uranium-92) based on the activity indicated on the label
- B. If in possession of a device meeting the criteria of item A, a person to whom subpart 3 applies must register the device annually with the commissioner and pay the fee required under Mmnesota Statutes, section 144 1205.
- (1) Registration must be done by verifying, correcting, or adding to the information provided in a request for registration received from the commissioner Registration information must be submitted to the commissioner within 30 days of the date of the request for registration or as otherwise indicated in the request
- (2) A general licensee holding devices meeting the criteria of item A is subject to the bankruptcy notification requirement under part 4731 3075, subpart 4. Each address for a location of use under item C, subitem (4), represents a separate general license and requires a separate registration and fee.

4731.3215 RADIATION SAFETY

- (3) Persons generally licensed by an agreement state with respect to devices meeting the criteria in item A are not subject to registration under this item if the devices are used in areas subject to the commissioner's jurisdiction for a period of less than 180 days in any calendar year. The commissioner shall not request registration information from such licensees.
- C In registering devices under item B, a person to whom subpart 3 applies must furnish the following information and any other information specifically requested by the commissioner
 - (1) name and mailing address of the general licensee,
 - (2) the following mformation about each device
 - (a) the manufacturer or initial transferor,
 - (b) the model number,
 - (c) the serial number; and
 - (d) the radioisotope and activity, as indicated on the label;
- (3) name, title, and telephone number of the responsible person designated as a representative of the general licensee under subpart 3, item P,
- (4) address or location at which each device is used or stored. For portable devices, the address of the primary place of storage must be furnished,
- (5) certification by the responsible representative of the general licensee that the information concerning the device has been verified through a physical inventory and checking of label information; and
- (6) certification by the responsible representative of the general licensee that the responsible representative is aware of the requirements of the general hoense
- Subp 4 **Limitation.** The general license issued under subpart 1 does not authorize the manufacture or import of devices containing radioactive material

Statutory Authority: MS s 144.1202, 144.1203

History: 32 SR 831

4731.3330 SPECIFIC LICENSE; CERTAIN DEVICES CONTAINING RADIOACTIVE MATERIALS; MANUFACTURE OR INITIAL TRANSFER.

Subpart 1 **Approval criteria.** An application for a specific license to manufacture or initially transfer devices containing radioactive material to a person generally licensed under part 4731.3215 or equivalent regulations of the NRC or an agreement state shall be approved if.

[For text of items A to D, see M.R.]

E. each device meeting the criteria of part 4731.3215, subpart 3a, bears a permanent embossed, etched, stamped, or engraved label affixed to the source housing if separable, or the device if the source housing is not separable, that includes the words "Caution-Radioactive Material" and, if practicable, the radiation symbol described in part 4731 2300.

Subp. 4. Transfer for use under general license; requirements. If a device containing radioactive material is to be transferred for use under a general license issued under part 4731.3215, a person that is licensed under this part must provide the information specified in this subpart to each person to whom a device is to be transferred. The information must be provided before the device may be transferred. In case of a transfer through an intermediate person, the information must also be provided to the intended user before the initial transfer to the intermediate person. The required information includes:

A. a copy of the general license issued under part 4731 3215. If part 4731 3215, subpart 3, items B to D, or 3a, do not apply to the particular device, those items may be omitted;

[For text of items B to E, see M R] [For text of subps 5 to 11, see M R.]

Statutory Authority: MS s 144 1202, 144 1203

History: 32 SR 831

4731.3395 SPECIFIC LICENSE; RADIOACTIVE DRUGS FOR MEDICAL USE; MANUFACTURE, PREPARATION, OR TRANSFER.

[For text of subpart 1, see M R]

Subp 2 Pharmacy licensees.

- A. A licensee described in subpart 1, item B, subitem (3) or (4) may:
- (1) prepare radioactive drugs for medical use, provided that the radioactive drug is prepared by either an authorized nuclear pharmacist, as specified in subitem (2) or item C, or an individual under the supervision of an authorized nuclear pharmacist, as specified in part 4731 4407; and
 - (2) allow a pharmacist to work as an authorized nuclear pharmacist if
 - (a) the individual qualifies as an authorized nuclear pharmacist,
- (b) the individual meets the requirements under parts 4731 4413 and 4731 4415 and the licensee has received an approved license amendment identifying the individual as an authorized nuclear pharmacist, or
- (c) the individual is designated as an authorized nuclear pharmacist according to item \boldsymbol{C}

[For text of items B to D, see MR.] [For text of subps 3 and 4, see MR]

Statutory Authority: MS s 144 1202, 144 1203

History: 32 SR 831

4731.3400 SPECIFIC LICENSE; SOURCES OR DEVICES FOR MEDICAL USE; MANUFACTURE AND DISTRIBUTION.

Subpart 1 **Approval criteria.** An application for a specific license to manufacture and distribute sources and devices containing radioactive material to persons licensed according to parts 4731.4400 to 4731.4527 for use as a calibration, transmission, or reference source or for the uses listed under parts 4731 4450, 4731 4460, and 4731 4463 shall be approved if

[For text of items A to C, see MR] [For text of subps 2 and 3, see MR]

Statutory Authority: MS s 144 1202, 144 1203

History: 32 SR 831

4731.4030 PERFORMANCE REQUIREMENTS; INDUSTRIAL RADIOGRAPHY EQUIPMENT.

[For text of subpart 1, see MR]

Subp 2 Additional requirements.

[For text of items A and B, see MR]

C Radiographic exposure devices intended for use as Type B transport containers must meet the applicable requirements under parts $4731\ 0400$ to $4731\ 0455$

[For text of item D, see M R]
[For text of subps 3 and 4, see M R]

Statutory Authority: *MS's 144 1202, 144.1203*

History: 32 SR 831

4731.4110 LABELING; PACKAGING; SECURITY.

[For text of subpart 1, see MR]

Subp 2 **Required packaging.** A licensee may not transport licensed material unless the material is packaged, and the package is labeled, marked, and accompanied with appropriate shipping papers, according to parts 4731 0400 to 4731.0455.

[For text of subps 3 and 4, see M.R.]

Statutory Authority: MS s 144 1202, 144 1203

History: 32 SR 831

4731.4140 RADIOGRAPHER TRAINING.

Subpart 1 **Requirements; radiographer.** A licensee may not permit an individual to act as a radiographer until the individual.

[For text of items A to C, see M.R.]

D receives copies of and instruction in parts 4731.0200, 4731.0280, and 4731.0290, the applicable DOT regulations under parts 4731.0400 to 4731.0455, the applicable portions of parts 4731.1000 to 4731.2950, parts 4731.4000 to 4731.4360; the license under which the radiographer will perform industrial radiography, and the licensee's operating and emergency procedures,

[For text of items E to G, see MR]

Subp 2 Requirements; radiographer's assistant. A licensee may not permit an individual to act as a radiographer's assistant until the individual

A receives copies of and instruction in parts 4731 0200, 4731.0280, and 4731 0290; the applicable DOT regulations under parts 4731 0400 to 4731 0455; the applicable portions of parts 4731 1000 to 4731 2950; parts 4731 4000 to 4731 4360, the license under which the radiographer's assistant will perform industrial radiography, and the licensee's operating and emergency procedures;

[For text of items B and C, see M R.]

[For text of subps'3 to 7, see MR]

Statutory Authority: MS s 144 1202, 144.1203

History: 32 SR 831

4731.4403 SPECIFIC LICENSE; MEDICAL USE OF RADIOACTIVE MATERIALS.

[For text of subps 1 and 2, see M.R.]

Subp 3 License amendments. A licensee must apply for and receive a license amendment

[For text of item A, see MR]

- B before the licensee permits anyone to work as an authorized user, authorized nuclear pharmacist, or authorized medical physicist under the license, except:
- (1) for an authorized user, an individual who meets the requirements under parts 4731 4415 and 4731 4433, subpart 1, item A, 4731 4436, subpart 1, item A, 4731.4443, subpart 1, item A, 4731 4444, item A, 4731.4445, item A, 4731 4458, subpart 1, item A, 4731 4461, item A, or 4731 4479, subpart 1, item A,
- (2) for an authorized nuclear pharmacist, an individual who meets the requirements under parts 4731 4413; subpart 1, item A, and 4731.4415;
- (3) for an authorized medical physicist, an individual who meets the requirements under parts 4731 4412, subpart 1, item A, and 4731.4415; or

[For text of subitem (4), see M R] [For text of items C to G, see M.R]

Subp. 4. Notifications of changes.

- A A licensee must provide the commissioner a copy of the board certification and written attestation signed by a preceptor, the license issued by the NRC or an agreement state, the permit issued by an NRC or agreement state master material license broad scope permittee, or the permit issued by an NRC or agreement state licensee of broad scope for each individual no later than 30 days after the date that the licensee allows, under subpart 3, item B, the individual to work as
 - (1) an authorized user,
 - (2) an authorized nuclear pharmacist; or
 - (3) an authorized medical physicist.
 - B A licensee must notify the commissioner by letter no later than 30 days after
- (1) an authorized user, an authorized nuclear pharmacist, a radiation safety officer, or an authorized medical physicist permanently discontinues performance of duties under the license or has a name change,
 - (2) the licensee's mailing address changes,
- (3) the licensee's name changes, but the name change does not constitute a transfer of control of the license as described under part 4731 3075, subpart 2,
- (4) the licensee has added to or changed the areas of use identified in the application or license where radioactive material is used according to part 4731.4432 or 4731 4434; or
- (5) the licensee permits an authorized user or an individual qualified to be a radiation safety officer under parts 4731 4411 and 4731 4415, to function as a temporary radiation safety officer and to perform the functions of a radiation safety officer as described under part 4731 4405, subpart 1, item C
- $\,$ C $\,$ A licensee must mail required documents to the address under part 4731 0200, subpart 4 $\,$

[For text of subps 5 to 7, see M R]

Statutory Authority: MS s 144.1202, 144 1203

History: 32 SR 831

4731.4410 SUPPLIERS OF MEDICAL USE SEALED SOURCES OR DEVICES.

For medical use, a licensee may use only

A sealed sources or devices manufactured, labeled, packaged, and distributed according to a license issued under parts 4731.3000 to 4731 3175 and 4731 3400 or equivalent requirements of the NRC or an agreement state;

 $\,\,$ B $\,$ sealed sources or devices noncommercially transferred from a licensee licensed under parts 4731 4400 to 4731 4527 or equivalent requirements of the NRC or an agreement state; or

C. teletherapy sources manufactured and distributed according to a license issued under parts 4731 3000 to 4731.3175 or equivalent requirements of the NRC or an agreement state

Statutory Authority: MS s 144 1202; 144 1203

History: 32 SR 831

4731.4411 RADIATION SAFETY OFFICER TRAINING.

Subpart 1. **Training and education requirements.** Except as provided under part 4731 4414, a licensee must require an individual fulfilling the responsibilities of a radiation safety officer as provided under part 4731.4405 to be an individual who.

A is certified by a specialty board whose certification process has been recognized by the NRC or an agreement state and

- (1) has obtained written attestation, signed by a preceptor radiation safety officer, that the individual has satisfactorily completed the requirements in this item and subpart 2 and has achieved a level of radiation safety knowledge sufficient to function independently as a radiation safety officer for a medical use licensee, and
- (2) has training in the radiation safety, regulatory issues, and emergency procedures for the types of use for which a licensee seeks approval. This training requirement may be satisfied by completing training that is supervised by a radiation safety officer, authorized medical physicist, authorized nuclear pharmacist, or authorized user, as appropriate, who is authorized for the types of use for which the licensee is seeking approval,
 - B. (1) has completed a structured educational program consisting of both:
 - (a) 200 hours of classroom and laboratory training m the following areas:
 - 1. radiation physics and instrumentation,
 - 11 radiation protection,
 - mathematics pertaining to the use and measurement of radioac-

tivity,

- iv radiation biology, and
- v radiation dosimetry,
- (b) one year of full-time radiation safety experience under the supervision of an individual identified as the radiation safety officer on an NRC or agreement state license or permit issued by an NRC master material licensee that authorizes similar types of uses of radioactive material involving
 - 1 shipping, receiving, and performing related radiation surveys;
- using and performing checks for proper operation of instruments used to determine the activity of dosages, survey meters, and instruments used to measure radionuclides,
 - 111. securing and controlling radioactive material;
- IV using administrative controls to avoid mistakes in the administration of radioactive material;
- v using procedures to prevent or minimize radioactive contamination and using proper decontamination procedures,
 - vi using emergency procedures to control radioactive material, and
 - vii disposing of radioactive material,
- (2) has obtained written attestation, signed by a preceptor radiation safety officer, that the individual has satisfactorily completed the requirements in this item and has achieved a level of radiation safety knowledge sufficient to function independently as a radiation safety officer for a medical use licensee; and
- (3) has training in the radiation safety, regulatory issues, and emergency procedures for the types of use for which a licensee seeks approval. This training requirement may be satisfied by completing training that is supervised by a radiation safety officer, authorized medical physicist, authorized nuclear pharmacist, or authorized user, as appropriate, who is authorized for the types of use for which the licensee is seeking approval,
- $\,$ C $\,$ 1s a medical physicist who has been certified by a specialty board whose certification process has been recognized by the NRC or an agreement state under part 4731 4412

and has experience in radiation safety for similar types of use of radioactive material for which the licensee is seeking approval of the individual as radiation safety officer and

- (1) has obtained written attestation, signed by a preceptor radiation safety officer, that the individual has satisfactorily completed the requirements in this item and has achieved a level of radiation safety knowledge sufficient to function independently as a radiation safety officer for a medical use licensee, and
- (2) has training in the radiation safety, regulatory issues, and emergency procedures for the types of use for which a licensee seeks approval. This training requirement may be satisfied by completing training that is supervised by a radiation safety officer, authorized medical physicist, authorized nuclear pharmacist, or authorized user, as appropriate, who is authorized for the types of use for which the heensee is seeking approval, or
- D is an authorized user, authorized medical physicist, or authorized nuclear pharmacist identified on the licensee's license and has experience with the radiation safety aspects of similar types of use of radioactive material for which the individual has radiation safety officer responsibilities and
- (1) has obtained written attestation, signed by a preceptor radiation safety officer, that the individual has satisfactorily completed the requirements in this item and has achieved a level of radiation safety knowledge sufficient to function independently as a radiation safety officer for a medical use licensee, and
- (2) has training in the radiation safety, regulatory issues, and emergency procedures for the types of use for which a licensee seeks approval. This training requirement may be satisfied by completing training that is supervised by a radiation safety officer, authorized medical physicist, authorized nuclear pharmacist, or authorized user, as appropriate, who is authorized for the types of use for which the licensee is seeking approval.
- Subp 2 Certification requirements. A specialty board under subpart 1, item A, shall require all candidates for certification to
- A (1) hold a bachelor's or graduate degree from an accredited college or university in physical science or engineering or biological science with a minimum of 20 college credits in physical science,
- (2) have five or more years of professional experience in health physics, including at least three years in applied health physics. Graduate training may be substituted for no more than two years of the required experience; and
- (3) pass an examination administered by diplomates of the specialty board, which evaluates knowledge and competence in radiation physics and instrumentation, radiation protection, mathematics pertaining to the use and measurement of radioactivity, radiation biology, and radiation dosimetry, or
- B (1) hold a master's or doctor's degree in physics, medical physics, other physical science, engineering, or applied mathematics from an accredited college or university,
- (2) have two years of full-time practical training or supervised experience in medical physics.
- (a) under the supervision of a medical physicist who is certified in medical physics by a specialty board recognized by the NRC or an agreement state, or
- (b) in clinical nuclear medicine facilities providing diagnostic or therapeutic services under the direction of physicians who meet the requirements for authorized users in part 4731 4436 or 4731 4443, and
- (3) pass an examination, administered by diplomates of the specialty board, that assesses knowledge and competence in clinical diagnostic radiological or nuclear medicine physics and in radiation safety.

Statutory Authority: MS s 144.1202, 144 1203

History: 32 SR 831

4731.4412 AUTHORIZED MEDICAL PHYSICIST TRAINING.

Subpart 1 **Training and education requirements.** Except as provided in part 4731.4414, a licensee must require an authorized medical physicist to be an individual who

'A is certified by a specialty board whose certification process has been recognized by the NRC or an agreement state and

- (1) has obtained written attestation that the individual has satisfactorily completed the requirements in this item and subpart 2 and has achieved a level of competency sufficient to function independently as an authorized medical physicist for each type of therapeutic medical unit for which the individual is requesting authorized medical physicist status. The written attestation must be signed by a preceptor authorized medical physicist who meets the requirements in this part or equivalent agreement state requirements for an authorized medical physicist for each type of therapeutic medical unit for which the individual is requesting authorized medical physicist status, and
- (2) has training for the types of use for which authorization is sought that includes hands-on device operation, safety procedures, clinical use, and the operation of a treatment planning system. This training requirement may be satisfied by satisfactorily completing either a training program provided by the vendor or by training supervised by an authorized medical physicist authorized for the types of use for which the individual is seeking authorization, or
- B (1) holds a master's or doctor's degree in physics, medical physics, other physical science, engineering, or applied mathematics from an accredited college or university, and
 - (a) has completed one year of full-time training in medical physics;
- (b) has completed an additional year of full-time work experience under the supervision of an individual who meets the requirements for an authorized medical physicist for the types of use for which the individual is seeking authorization. This training and work experience must be conducted in clinical radiation facilities that provide highenergy, external beam therapy (photons and electrons with energies greater than or equal to 1,000,000 electron volts) and brachytherapy services and must include:
 - 1. performing sealed source leak tests and inventories;
 - 11 performing decay corrections;
- performing full calibration and periodic spot checks of external beam treatment units, stereotactic radiosurgery units, and remote afterloading units as applicable, and
- iv. conducting radiation surveys around external beam treatment units, stereotactic radiosurgery units, and remote afterloading units as apphicable,
- (2) has obtained written attestation that the individual has satisfactorily completed the requirements in this item and has achieved a level of competency sufficient to function independently as an authorized medical physicist for each type of therapeutic medical unit for which the individual is requesting authorized medical physicist status. The written attestation must be signed by a preceptor authorized medical physicist who meets the requirements in this part or equivalent NRC or agreement state requirements for an authorized medical physicist for each type of therapeutic medical unit for which the individual is requesting authorized medical physicist status, and
- (3) has training for the types of use for which authorization is sought that includes hands-on device operation, safety procedures, clinical use, and the operation of a treatment planning system. This training requirement may be satisfied by satisfactorily completing either a training program provided by the vendor or by training supervised by an authorized medical physicist authorized for the types of use for which the individual is seeking authorization.

- Subp 2 Certification requirements. A specialty board under subpart 1, item A, shall require all candidates for certification to
- A hold a master's or doctor's degree in physics, medical physics, or other physical science, engineering, or applied inathematics from an accredited college or university, and
- $\,\,B\,\,$ have two years of full-time practical training or supervised experience in medical physics
- (1) under the supervision of a medical physicist who is certified in medical physics by a specialty board recognized by the commissioner, the NRC, or an agreement state, or
- (2) in chinical radiation facilities providing high-energy, external beam therapy (photons and electrons with energies greater than or equal to 1,000,000 electron volts) and brachytherapy services under the direction of physicians who meet the requirements for authorized users in part 4731.4458 or 4731 4479, and
- C. pass an examination, administered by diplomates of the specialty board, that assesses knowledge and competence in clinical radiation therapy, radiation safety, calibration, quality assurance, and treatment planning for external beam therapy, brachytherapy, and stereotactic radiosurgery

Statutory Authority: MS s 144 1202, 144 1203

History: 32 SR 831

4731.4413 AUTHORIZED NUCLEAR PHARMACIST TRAINING.

Subpart 1. Training and education requirements. Except as provided in part 4731 4414, a licensee must require an authorized nuclear pharmacist to be a pharmacist who

- A is certified by a specialty board whose certification process has been recognized by the NRC or an agreement state and has obtained written attestation signed by a preceptor authorized nuclear pharmacist, that the individual has satisfactorily completed the requirements in subpart 2 and has achieved a level of competency sufficient to function independently as an authorized nuclear pharmacist, or
- B (1) has completed 700 hours in a structured educational program consisting of both:
 - (a) 200 hours of classroom and laboratory training in the following areas
 - 1 radiation physics and instrumentation,
 - 11 radiation protection,
 - mathematics pertaining to the use and measurement of radioac

tivity,

- iv chemistry of radioactive material for medical use, and
- v radiation biology, and
- (b) supervised practical experience in a nuclear pharmacy involving
 - shipping, receiving, and performing related radiation surveys,
- using and performing checks for proper operation of instruments used to determme the activity of dosages, survey meters, and, if appropriate, instruments used to measure alpha- or beta-emitting radionuclides,
- calculating, assaying, and safely preparing dosages for patients or human research subjects,
- $\,$ iv $\,$ using administrative controls to avoid medical events in the administration of radioactive material, and
- v. using procedures to prevent or minimize radioactive contamination and using proper decontamination procedures; and

4731.4413 RADIATION SAFETY

- (2) has obtained written attestation signed by a preceptor authorized nuclear pharmacist, that the individual has satisfactorily completed the requirements in this item and has achieved a level of competency sufficient to function independently as an authorized nuclear pharmacist.
- Subp 2 Certification requirements. A specialty board under subpart 1, item A, shall require all candidates for certification to
- A. have graduated from a pharmacy program accredited by the American Council on Pharmaceutical Education (ACPE) or have passed the Foreign Pharmacy Graduate Examination Committee (FPGEC) examination;
 - B. hold a current, active license to practice pharmacy.
- · C provide evidence of having acquired at least 4,000 hours of training or experience in nuclear pharmacy practice. Academic training may be substituted for no more than 2,000 hours of the required training and experience, and
- D pass an examination in nuclear pharmacy, administered by diplomates of the specialty board, that assesses knowledge and competency in procurement, compounding, quality assurance, dispensing, distribution, health and safety, radiation safety, provision of information and consultation, monitoring patient outcomes, research, and development.

Statutory Authority: MS s 144 1202, 144 1203

History: 32 SR 831

4731.4414 TRAINING; EXPERIENCED RADIATION SAFETY OFFICER, TELETHERAPY OR MEDICAL PHYSICIST, AUTHORIZED USER, AND NUCLEAR PHARMACIST.

[For text of item A, see M.R.]

- B An individual identified as a radiation safety officer, an authorized medical physicist; or an authorized nuclear pharmacist on an NRC or agreement state license; a permit issued by an NRC or agreement state broad scope licensee; an NRC or agreement state master material license permit; or a permit issued by a master material license permittee of broad scope between October 24, 2002, and April 29, 2005, need not comply with the training requirements of part 4731.4411, 4731 4412, or 4731 4413
- C. Physicians, dentists, or podiatrists identified as authorized users for the medical use of radioactive material on a license issued by the NRC or an agreement state, a permit issued by an NRC master material hierase, a permit issued by an NRC or agreement state broad scope licensee, or a permit issued by an NRC master material license broad scope permittee before October 24, 2002, who perform only those medical uses for which they were authorized on that date, need not comply with the training requirements of parts 4731 4432 to 4731.4479.
- D. Physicians, dentists, or podiatrists identified as authorized users for the medical use of radioactive material on a license issued by the coinmissioner, the NRC, or an agreement state, a permit issued by an NRC master material licensee, a permit issued by an NRC or agreement state broad scope licensee, or a permit issued by an NRC master material license broad scope permittee who perform only those medical uses for which they were authorized between October 24, 2002, and April 29, 2005, need not comply with the training requirements of parts 4731 4432 to 4731.4479

Statutory Authority: MS s 144 1202, 144 1203

History: 32 SR 831

4731.4423 AUTHORIZATION FOR CALIBRATION, TRANSMISSION, AND REFERENCE USE.

A person authorized under part 4731.4403, subpart 1, for medical use of radioactive material may receive, possess, and use the following radioactive material for check, calibration, transmission, and reference use

[For text of items A to C, see MR]

D any radioactive material with a half-life longer than 120 days in individual amounts not to exceed the smaller of 200 microcuries $(7.4 \, MBq)$ or 1,000 times the quantities in part 4731 3160, and

E. technetium-99m in amounts as needed

Statutory Authority: MS s 144 1202, 144 1203

History: 32 SR 831

4731.4427 RELEASE OF INDIVIDUALS CONTAINING UNSEALED RADIOACTIVE MATERIAL OR IMPLANTS.

A. A licensee may authorize release from licensee control of an individual who has been administered unsealed radioactive material or implants containing radioactive material if the total effective dose equivalent to any other individual from exposure to the released individual is not likely to exceed 0.5 rem (5 mSv)

[For text of items B to D, see MR]

Statutory Authority: MS s 144 1202, 144.1203

History: 32 SR 831

4731.4432 UNSEALED RADIOACTIVE MATERIAL; UPTAKE, DILUTION, AND EXCRETION STUDIES; WRITTEN DIRECTIVE NOT REQUIRED.

Except for quantities that require a written directive under part 4731 4408 or 4731 4409, a licensee may use any unsealed radioactive material prepared for medical use for uptake, dilution, or excretion studies that is

[For text of item A, see MR]

B prepared by

- (1) an authorized nuclear pharmacist;
- (2) a physician who is an authorized user and who meets the requirements of part 4731 4436 or parts 4731.4436, subpart 1, item C, subitem (1), unit (b), subunit vii, and 4731 4443; or
- (3) an individual under the supervision, according to part 4731 4407, of the authorized nuclear pharmacist in subitem (1) or the physician who is an authorized user in subitem (2),

[For text of items C and D, see MR.]

Statutory Authority: MS s 144 1202, 144 1203

History: 32 SR 831

4731.4433 UPTAKE, DILUTION, AND EXCRETION STUDIES; TRAINING.

Subpart 1 **Training and education requirements.** Except as provided under part 4731 4414, a licensee must require the authorized user of unsealed radioactive material for the uses authorized under part 4731 4432 to be a physician who

A is certified by a medical specialty board whose certification process has been recognized by the NRC or an agreement state and has obtained written attestation, signed by a preceptor authorized user who meets the requirements of this part, part 4731.4436 or 4731 4443, or equivalent requirements of the NRC or an agreement state, that the individual has satisfactorily completed the requirements in subpart 2 and has achieved a level of competency sufficient to function independently as an authorized user for the medical uses authorized under part 4731.4432,

B is an authorized user under part 4731 4436 or 4731 4443 or under equivalent requirements of the NRC or an agreement state; or

4731.4433 RADIATION SAFETY

C has.

(1) completed 60 hours of training and experience, including a minimum of eight hours of classroom and laboratory training, in basic radionuclide handling techniques applicable to the medical use of unsealed radioactive material for uptake, dilution, and excretion studies. The training and experience must include

[For text of unit (a), see M.R.]

- (b) work experience, under the supervision of an authorized user who meets the requirements under this part, part 4731 4436 or 4731 4443, or equivalent requirements of the NRC or an agreement state, involving
- 1. ordering, receiving, and unpacking radioactive materials safely and performing the related radiation surveys,
- 11. performing quality control procedures on instruments used to determine the activity of dosages and performing checks for proper operation of survey meters;
- calculating, measuring, and safely preparing patient or human research subject dosages;
- iv. using administrative controls to prevent a medical event involving the use of unsealed radioactive material,
- $\dot{}$ v using procedures to safely contain spilled radioactive material and using proper decontamination procedures, and
- $$\rm v{\sc i}$$ administering dosages of radioactive drugs to patients or human research subjects, and
- (2) obtained written attestation, signed by a preceptor authorized user who meets the requirements of this part, part 4731 4436 or 4731.4443, or equivalent requirements of the NRC or an agreement state, that the individual has satisfactorily completed the requirements in this item and has achieved a level of competency sufficient to function independently as an authorized user for the medical uses authorized under part 4731 4432
- Subp 2 Certification requirements. A specialty board under subpart 1, item A, shall require all candidates for certification to
- A complete 60 hours of training and experience in basic radionuclide handling techniques and radiation safety applicable to the medical use of unsealed radioactive material for uptake, dilution, and excretion studies that include the topics listed in subpart 1, item C, subitem (1), units (a) and (b), and
- B. pass an examination, administered by diplomates of the specialty board, that assesses knowledge and competence in radiation safety, radionuclide handling, and quality control

Statutory Authority: MS s 144 1202; 144.1203

History: 32 SR 831

4731.4434 UNSEALED RADIOACTIVE MATERIAL; IMAGING AND LOCAL-IZATION STUDIES; WRITTEN DIRECTIVE NOT REQUIRED.

Except for quantities that require a written directive under part 4731.4408, a licensee may use any unsealed radioactive material prepared for medical use for imaging and localization studies that is

A obtained from a manufacturer or preparer licensed under part 4731 3395 or equivalent requirements of the NRC or an agreement state;

B prepared by

(1) an authorized nuclear pharmacist,

- (2) a physician who is an authorized user and meets the requirements specified m part 4731 4436, or parts 4731 4436, subpart 1, item C, subitem (1), unit (b), subunit vii, and 4731 4443, or
- (3) an individual under the supervision, according to part 4731.4407, of the authorized nuclear pharmacist in subitem (1) or the physician who is an authorized user in subitem (2).
- C obtained from and prepared by an NRC or agreement state licensee for use in research according to a radioactive drug research committee-approved protocol or an investigational new drug protocol accepted by the Food and Drug Administration; or

[For text of item D, see M.R.]

Statutory Authority: MS s 144 1202; 144 1203

History: 32 SR 831

4731.4436 IMAGING AND LOCALIZATION STUDIES; TRAINING.

Subpart 1 **Training and education requirements.** Except as provided under part 4731 4414, a hoensee must require an authorized user of unsealed radioactive material for the uses authorized under part 4731 4434 to be a physician who

A is certified by a medical specialty board whose certification process has been recognized by the NRC or an agreement state and has obtained written attestation, signed by a preceptor authorized user who meets the requirements in this part, or in item C, subitem (1), unit (b), subunit vii, and part 4731 4443, or equivalent requirements of the NRC or an agreement state, that the individual has satisfactorily completed the requirements in subpart 2 and has achieved a level of competency sufficient to function independently as an authorized user for the medical uses authorized under parts 4731 4432 and 4731 4434,

B is an authorized user under part 4731 4443 and meets the requirements in item C, subitem (1), umt (b), subunit vii, or equivalent requirements of the NRC or an agreement state, or

C. has

(1) completed 700 hours of training and experience, including a minimum of 80 hours of classroom and laboratory training, in basic radionuchde handling techniques applicable to the medical use of unsealed radioactive material for imaging and localization studies. The training and experience must include, at a minimum:

[For text of unit (a), see MR]

- (b) work experience, under the supervision of an authorized user who meets the requirements under this part, or in subunit vii and part 4731 4443, or equivalent requirements of the NRC or an agreement state, involving
- 1. ordering, receiving, and unpacking radioactive materials safely and performing the related radiation surveys,
- 11. performing quality control procedures on instruments used to determine the activity of dosages and performing checks for proper operation of survey meters;

[For text of subunits in to vii, see MR]

(2) obtained written attestation, signed by a preceptor authorized user who meets the requirements in this part, or in subitem (1), unit (b), subunit vii, and part 4731.4443, or equivalent requirements of the NRC or an agreement state, that the individual has satisfactorily completed the requirements in this item and has achieved a level of competency sufficient to function independently as an authorized user for the medical uses authorized under parts 4731 4432 and 4731 4434

Subp 2 Certification requirements. A specialty board shall require all candidates for certification to

A complete 700 hours of training and experience in basic radionuclide handling techniques and radiation safety applicable to the medical use of unsealed radioactive material for imaging and localization studies that include the topics listed in subpart 1, item C, subitem (1), units (a) and (b); and

B pass an examination administered by diplomates of the specialty board, which assesses knowledge and competence in radiation safety, radionuclide handling, and quality control

Statutory Authority: MS s 144.1202, 144 1203

History: 32 SR 831

4731.4443 UNSEALED RADIOACTIVE MATERIAL; WRITTEN DIRECTIVE RE-QUIRED; TRAINING.

Subpart 1 **Training and education requirements.** Except as provided under part 4731 4414, a licensee must require an authorized user of unsealed radioactive material for the uses authorized under part 4731 4440 to be a physician who

A. is certified by a medical specialty board whose certification process has been recognized by the NRC or an agreement state, meets the requirements in item B, subitem (1), unit (b), subunit vi, and has obtained written attestation that the individual has satisfactorily completed the requirements in this item and subpart 2 and has achieved a level of competency sufficient to function independently as an authorized user for the medical uses authorized under part 4731 4440. The written attestation must be signed by a preceptor authorized user who meets the requirements of this part or equivalent requirements of the NRC or an agreement state. A preceptor authorized user who meets the requirements in item B must also have experience in administering dosages in the same dosage category or categories under item B, subitem (1), unit (b), subunit vi, as the individual requesting authorized user status;

B has

(1) completed 700 hours of training and experience, including a minimum of 200 hours of classroom and laboratory training, in basic radionuclide handling techniques applicable to the medical use of unsealed radioactive material requiring a written directive. The training and experience must include

[For text of unit (a), see MR]

- (b) work experience, under the supervision of an authorized user who meets the requirements in this part or equivalent requirements of the NRC or an agreement state. A supervising authorized user who meets the requirements in this item must also have experience in administering dosages in the same dosage category or categories under subunit vi as the individual requesting authorized user status. The work experience must involve:
- ordering, receiving, and unpacking radioactive materials safely and performing the related radiation surveys;
- 11 performing quality control procedures on instruments used to determine the activity of dosages and performing checks for proper operation of survey meters,

[For text of subunits iii to v, see MR.]

vi. administering dosages of radioactive drugs to patients or human research subjects involving a minimum of three cases in each of the following categories for which the individual is requesting authorized user status—oral administration of less than or equal to 33 millicuries (1 22 GBq) of sodium iodide (I-131) for which a written directive is required; oral administration of greater than 33 millicuries (1 22 GBq) of sodium iodide (I-131) (experience with at least three cases also satisfies the requirement of oral

administration of less than or equal to 33 millicuries of I-131); parenteral administration of any beta emitter, or a photon-emitting radionuclide with a photon energy less than 150 kilo electron volts for which a written directive is required, or parenteral administration of any other radionuclide for which a written directive is required, and

- (2) obtained written attestation that the individual has satisfactorily completed the requirements in this item and has achieved a level of competency sufficient to function independently as an authorized user for the medical uses authorized under part 4731 4440. The written attestation must be signed by a preceptor authorized user who meets the requirements of this part or equivalent requirements of the NRC or an agreement state. A preceptor authorized user who meets the requirements in this item must also have experience in administering dosages in the same dosage category or categories under subitem (1), unit (b), subunit vi, as the individual requesting authorized user status.
- Subp 2. Certification requirements. A specialty board under subpart 1, item A, shall require all candidates for certification to
- A successfully complete residency training in a radiation therapy or nuclear medicine training program or a program in a related medical specialty. These residency training programs must include 700 hours of training and experience as described in subpart 1, item B, subitem (1), units (a) and (b), subunits i to v. Eligible training programs must be approved by the Residency Review Committee of the Accreditation Council for Graduate Medical Education, the Royal College of Physicians and Surgeons of Canada, or the Committee on Postgraduate Training of the American Osteopathic Association; and
- B pass an examination, administered by diplomates of the specialty board, that tests knowledge and competence in radiation safety, radionuclide handling, quality assurance, and clinical use of unsealed radioactive material for which a written directive is required

Statutory Authority: MS s 144 1202, 144 1203

History: 32 SR 831

4731.4444 ORAL ADMINISTRATION OF SODIUM IODIDE I-131; QUANTITIES LESS THAN OR EQUAL TO 33 MILLICURIES (1.22 GBq); WRITTEN DIRECTIVE REQUIRED; TRAINING.

Except as provided under part 4731.4414, a licensee must require an authorized user for the oral administration of sodium iodide (I-131) requiring a written directive in quantities less than or equal to 33 millicuries (1 22 GBq) to be a physician who

A. is certified by a medical specialty board whose certification process has been recognized by the NRC or an agreement state and includes all of the requirements of item C, subitems (1) and (2), and who has obtained written attestation that the individual has satisfactorily completed the requirements of item C, subitems (1) and (2), and has achieved a level of competency sufficient to function independently as an authorized user for medical uses authorized under part 4731.4440. The written attestation must be signed by a preceptor authorized user who meets the requirements of this part, part 4731.4443 or 4731.4445, or equivalent requirements of the NRC or an agreement state. A preceptor authorized user who meets the requirement in part 4731.4443, subpart 1, item B, must also have experience in oral administration of less than or equal to 33 millicuries (1.22 GBq) of sodium iodide (I-131) for which a written directive is required or oral administration of greater than 33 millicuries (1.22 GBq) of sodium iodide (I-131) as specified in part 4731.4443, subpart 1, item B, subitem (1), unit (b), subunit vi,

B is an authorized user under part 4731 4443, for oral administration of less than or equal to 33 millicuries (1 22 GBq) of sodium iodide (I-131) for which a written directive is required or oral administration of greater than 33 millicuries (1 22 GBq) of sodium iodide (I-131) under part 4731 4443 or 4731 4445, or under equivalent requirements of the NRC or an agreement state, or

4731.4444 RADIATION SAFETY

C has

(1) successfully completed 80 hours of classroom and laboratory training, applicable to the medical use of sodium iodide (I-131) for procedures requiring a written directive. The training must include:

[For text of units (a) to (e), see MR]

- (2) work experience under the supervision of an authorized user who meets the requirements of this part, part 4731 4443 or 4731.4445, or equivalent requirements of the NRC or an agreement state A supervising authorized user who meets the requirements in part 4731 4443, subpart 1, item B, must also have experience in oral administration of less than or equal to 33 millicuries (1 22 GBq) of sodium iodide (I-131) for which a written directive is required or oral administration of greater than 33 millicuries (1.22 GBq) of sodium iodide (I-131) as specified in part 4731 4443. The work experience must involve
- (a) ordering, receiving, and unpacking radioactive materials safely and performing the related radiation surveys,
- (b) performing quality control procedures on instruments used to determine the activity of dosages and performing checks for the proper operation of survey meter's,

[For text of units (c) to (f), see MR]

(3) obtained written attestation that the individual has satisfactorily completed the requirements of this item and has achieved a level of competency sufficient to function independently as an authorized user for medical uses authorized under part 4731 4440. The written attestation must be signed by a preceptor authorized user who meets the requirements of this part, part 4731.4443 or 4731 4445, or equivalent requirements of the NRC or an agreement state. A preceptor authorized user who meets the requirement m part 4731 4443, subpart 1, item B, must also have experience in oral administration of less than or equal to 33 millicuries (1 22 GBq) of sodium iodide (I-131) for which a written directive is required or oral administration of greater than 33 millicuries (1 22 GBq) of sodium iodide (I-131) as specified in part 4731 4443

Statutory Authority: MS s 144 1202, 144 1203

History: 32 SR 831

4731.4445 ORAL ADMINISTRATION OF SODIUM IODIDE; QUANTITIES GREATER THAN 33 MILLICURIES (1.22 GBq); WRITTEN DIRECTIVE REQUIRED; TRAINING.

Except as provided under part 4731 4414, a licensee must require an authorized user for the oral administration of sodium iodide (1-131) requiring a written directive in quantities greater than 33 millicuries (1 22 GBq) to be a physician who

A. is certified by a medical specialty board whose certification process has been recognized by the NRC or an agreement state and includes all the requirements in item C, subitems (1) and (2), and who has obtained written attestation that the individual has satisfactorily completed the requirements of this item and has achieved a level of competency sufficient to function independently as an authorized user for medical uses authorized under part 4731.4440. The written attestation must be signed by a preceptor authorized user who meets the requirements in this part, part 4731 4443, or equivalent requirements of the NRC or an agreement state. A preceptor authorized user who meets the requirements in part 4731.4443, subpart 1, item B, must also have experience in the oral administration of I-131 in quantities greater than 33 millicuries as specified in part 4731 4443, subpart 1, item B, subitem (1), unit (b), subunit vi,

B is an authorized user under part 4731.4443, subpart 1, item A, 4731 4443, subpart 1, item B, for the oral administration of I-131 in quantities greater than 33 millicuries under part 4731.4443, subpart 1, item B, subitem (1), unit (b), subunit vi, or equivalent requirements of the NRC or an agreement state; or

C has:

(1) successfully completed 80 hours of classroom and laboratory training, applicable to the medical use of I-131 for procedures requiring a written directive. The training must include:

[For text of units (a) to (e), see MR]

- (2) has work experience, under the supervision of an authorized user who meets the requirements under this part, part 4731 4443, subpart 1, item A or B, or equivalent requirements of the NRC or an agreement state A supervising authorized user who meets the requirements in part 4731 4443, subpart 1, item B, must also have experience in the oral administration of I-131 in quantities greater than 33 millicuries under part 4731 4443, subpart 1, item B, subitem (1), unit (b), subunit vi. The work experience must involve
- (a) ordering, receiving, and unpacking radioactive materials safely and performing the related radiation surveys,
- (b) performing quality control procedures on instruments used to determine the activity of dosages and performing checks for proper operation of survey meters,

[For text of units (c) to (f), see MR]

(3) obtained written attestation that the individual has satisfactorily completed the requirements of this item and has achieved a level of competency sufficient to function independently as an authorized user for medical uses authorized under part 4731 4440. The written attestation must be signed by a preceptor authorized user who meets the requirements in this part, part 4731 4443, or equivalent requirements of the NRC or an agreement state. A preceptor authorized user who meets the requirements in part 4731 4443, subpart 1, item B, must also have experience in the oral administration of I-131 in quantities greater than 33 millicuries under part 4731.4443, subpart 1, item B, subitem (1), unit (b), subunit vi.

Statutory Authority: MS s 144 1202, 144 1203

History: 32 SR 831

4731.4446 PARENTERAL ADMINISTRATION OF UNSEALED RADIOACTIVE MATERIAL; WRITTEN DIRECTIVE REQUIRED; TRAINING.

- A Except as provided in part 4731 4414, the licensee must require an authorized user for the parenteral administration requiring a written directive to be a physician who is
- (1) an authorized user under part 4731.4443 or equivalent requirements of the NRC or an agreement state;
- (2) an authorized user under part 4731 4458 or 4731 4479 or equivalent requirements of the NRC or an agreement state and meets the requirements in item B, or
- (3) certified by a medical specialty board whose certification process has been recognized by the NRC or an agreement state under part 4731 4458 or 4731 4479 and meets the requirements in item B
 - B The physician under item A, subitems (2) and (3), must have:
- (1) successfully completed 80 hours of classroom and laboratory training, applicable to parenteral administrations, for which a written directive is required, of any beta emitter, or any photon-emitting radionuclide with a photon energy less than 150 keV or parenteral administration of any other radionuclide for which a written directive is required. The training must include.
 - (a) radiation physics and instrumentation,
 - (b) radiation protection;
 - (c) mathematics pertaining to the use and measurement of radioactivity,
 - (d) chemistry of radioactive material for medical use, and
 - (e) radiation biology,

4731.4446 RADIATION SAFETY

- (2) work experience, under the supervision of an authorized user who meets the requirements in this part or part 4731 4443, or equivalent requirements of the NRC or agreement state, in the parenteral administration, for which a written directive is required, of any beta emitter, or any photon-emitting radionuchde with a photon energy less than 150 keV or parenteral administration of any other radionuclide for which a written directive is required. A supervising authorized user who meets the requirements in part 4731 4443 must have experience in parenteral administration of any beta emitter, or a photon-emitting radionuclide with a photon energy less than 150 kilo electron volts for which a written directive is required or parenteral administration of any other radionuclide for which a written directive is required as specified in part 4731 4443, subpart 1, item B, subitem (1), unit (b), subunit vi. The work experience must involve
- (a) ordering, receiving, and unpacking radioactive materials safely and performing the related radiation surveys;
- (b) performing quality control procedures on instruments used to determine the activity of dosages and performing checks for proper operation of survey meters,
- (c) calculating, measuring, and safely preparing patient or human research subject dosages,
- (d) using administrative controls to prevent a medical event involving the use of unsealed radioactive materials,
- (e) using procedures to contain spilled radioactive materials safely and using proper decontamination procedures; and
- (f) administering dosages to patients or human research subjects, that include at least three cases involving the parenteral administration, for which a written directive is required, of any beta emitter, or any photon-emitting radionuclide with a photon energy less than 150 keV or at least three cases involving the parenteral administration of any other radionuclide for which a written directive is required, and
- (3) obtained written attestation that the individual has satisfactorily completed the requirements in this item and item A, subitem (2) or (3), and has achieved a level of competency sufficient to function independently as an authorized user for the parenteral administration of unsealed radioactive material requiring a written directive. The written attestation must be signed by a preceptor authorized user who meets the requirements in this part, part 4731 4443, or equivalent requirements of the NRC or agreement state. A preceptor authorized user who meets the requirements in part 4731.4443 must have experience in parenteral administration of any beta emitter, or a photon-emitting radionuclide with a photon energy less than 150 kilo electron volts for which a written directive is required or parenteral administration of any other radionuclide for which a written directive is required as specified in part 4731.4443, subpart 1, item B, subitem (1), unit (b), subumt vi

Statutory Authority: MS s 144 1202, 144.1203

History: 32 SR 831

4731.4458 MANUAL BRACHYTHERAPY TRAINING.

Subpart 1. **Training and education requirements.** Except as provided under part 4731.4414, a licensee must require an authorized user of a manual brachytherapy source for the uses authorized under part 4731.4450 to be a physician who

A is certified by a medical specialty board whose certification has been recognized by the NRC or an agreement state and has obtained written attestation, signed by a preceptor authorized user who meets the requirements of this part or equivalent requirements of the NRC or an agreement state, that the individual has satisfactorily completed the requirements of subpart 2 and has achieved a level of competency sufficient to function independently as an authorized user of manual brachytherapy sources for the medical uses authorized under part 4731 4450; or

B. has

(1) completed a structured educational program in basic radionuclide handling techniques applicable to the use of manual brachytherapy sources that includes.

[For text of units (a) and (b), see MR.]

- (2) completed three years of supervised clinical experience in radiation oncology, under an authorized user who meets the requirements of this part or equivalent requirements of the NRC or an agreement state, as part of a formal training program approved by the Residency Review Committee for Radiation Oncology of the Accreditation Council for Graduate Medical Education, the Royal College of Physicians and Surgeons of Canada, or the Committee on Postgraduate Training of the American Osteopathic Association This experience may be obtained concurrently with the supervised work experience required under subitem (1), unit (b); and
- (3) obtained written attestation, signed by a preceptor authorized user who meets the requirements of this part or equivalent requirements of the NRC or an agreement state, that the individual has satisfactorily completed the requirements of this item and has achieved a level of competency sufficient to function independently as an authorized user of manual brachytherapy sources for the medical uses authorized under part 4731.4450.
- Subp 2. Certification requirements. A specialty board under subpart 1, item A, shall require all candidates for certification to
- A. successfully complete a minimum of three years of residency training in a radiation oncology program approved by the Residency Review Committee of the Accreditation Council for Graduate Medical Education, the Royal College of Physicians and Surgeons of Canada, or the Committee on Postgraduate Training of the American Osteopathic Association; and
- B pass an examination, administered by diplomates of the specialty board, that tests knowledge and competence in radiation safety, radionuclide handling, treatment planning, quality assurance, and clinical use of manual brachytherapy

Statutory Authority: MS s 144 1202, 144.1203

History: 32 SR 831

4731.4459 OPHTHALMIC USE OF STRONTIUM-90; TRAINING.

Except as provided under part 4731 4414, a licensee must require an authorized user of strontium-90 for ophthalmic radiotherapy to be a physician who

A is an authorized user under part 4731 4458 or equivalent requirements of the NRC or an agreement state, or

B has

(1) completed 24 hours of classroom and laboratory training applicable to the medical use of strontium-90 for ophthalmic radiotherapy. The training must include

[For text of units (a) to (d), see MR.]

(2) had supervised clinical training in ophthalmic radiotherapy under the supervision of an authorized user at a medical institution, clinic, or private practice that includes the use of strontium-90 for the ophthalmic treatment of five individuals. The supervised clinical training must involve

[For text of units (a) to (d), see M.R.]

(3) obtained written attestation, signed by a preceptor authorized user who meets the requirements of this part, part 4731 4458, or equivalent requirements of the NRC or an agreement state, that the individual has satisfactorily completed the requirements in

4731.4459 RADIATION SAFETY

this item and has achieved a level of competency sufficient to function independently as an authorized user of strontium-90 for ophthalmic use

Statutory Authority: MS s 144.1202, 144.1203

History: 32 SR 831

4731.4461 USE OF SEALED SOURCES FOR DIAGNOSIS; TRAINING.

Except as provided under part 4731 4414, a licensee must require an authorized user of a diagnostic sealed source for use in a device authorized under part 4731 4460 to be a physician, dentist, or podiatrist who

[For text of item A, see M.R.]

B has

- (1) completed eight hours of classroom and laboratory training in basic radionuclide handling techniques specifically applicable to the use of the device. The training must include
 - (a) radiation physics and instrumentation,
 - (b) radiation protection,
 - (c) mathematics pertaining to the use and measurement of radioactivity;

and

- (d) radiation biology, and
- (2) completed training in the use of the device for the uses requested

Statutory Authority: MS s 144 1202; 144 1203

History: 32 SR 831

4731.4479 REMOTE AFTERLOADER UNITS, TELETHERAPY UNITS, AND GAMMA STEREOTACTIC RADIOSURGERY UNITS; TRAINING.

Subpart 1 **Training and education requirements.** Except as provided under part 4731 4414, a licensee must require an authorized user of a sealed source for a use authorized under part 4731.4463 to be a physician who

A is certified by a medical specialty board whose certification process has been recognized by the NRC or an agreement state, meets the requirements in item B, subitem (4), and has obtained written attestation that the individual has satisfactorily completed the requirements in this item and subpart 2 and has achieved a level of competency sufficient to function independently as an authorized user of each type of therapeutic medical unit for which the individual is requesting authorized user status. The written attestation must be signed by a preceptor authorized user who meets the requirements of this part or equivalent requirements of the NRC or an agreement state for an authorized user for each type of therapeutic medical unit for which the individual is requesting authorized user status, or

B. has

(1) completed a structured educational program in basic radionuclide techniques applicable to the use of a sealed source in a therapeutic medical unit that includes:

(2) completed three years of supervised clinical experience in radiation therapy, under an authorized user who meets the requirements of this part or equivalent requirements of the NRC or an agreement state, as part of a formal training program approved by the Residency Review Committee for Radiation Oncology of the Accreditation Council for Graduate Medical Education, the Royal College of Physicians and Surgeons of Canada, or the Committee on Postgraduate Training of the American Osteopathic Association. The experience may be obtained concurrently with the supervised work experience required under subitem (1), unit (b),

RADIATION SAFETY 4731.7050

- (3) obtained written attestation that the individual has satisfactorily completed the requirements in this item and has achieved a level of competency sufficient to function independently as an authorized user of each type of therapeutic medical unit for which the individual is requesting authorized user status. The written attestation must be signed by a preceptor authorized user who meets the requirements of this part or equivalent requirements of the NRC or an agreement state for an authorized user for each type of therapeutic medical umt for which the individual is requesting authorized user status, and
- (4) received training in device operation, safety procedures, and clinical use for the types of use for which authorization is sought. This training requirement may be satisfied by satisfactory completion of a training program provided by the vendor for new users or by receiving training supervised by an authorized user or authorized medical physicist, as appropriate, who is authorized for the types of use for which the individual is seeking authorization.
- Subp 2 Certification requirements. A specialty board under subpart 1, item A, shall require all candidates for certification to
- A successfully complete a minimum of three years of residency training in a radiation therapy program approved by the Residency Review Committee of the Accreditation Council for Graduate Medical Education, the Royal College of Physicians and Surgeons of Canada, or the Committee on Postgraduate Training of the American Osteopathic Association, and
- B pass an examination, administered by diplomates of the specialty board, that tests knowledge and competence in radiation safety, radionuclide handling, treatment planning, quality assurance, and clinical use of stereotactic radiosurgery, remote afterloaders, and external beam therapy

Statutory Authority: MS s 144 1202, 144 1203

History: 32 SR 831

4731.7050 LABELS, SECURITY, AND TRANSPORTATION PRECAUTIONS.

Subpart 1 Labeling.

[For text of items A and B, see MR]

C A licensee may not transport licensed material unless the material is packaged, labeled, marked, and accompanied with appropriate shipping papers according to parts 4731 0400 to 4731 0455

[For text of subp 2, see M.R.]

Statutory Authority: MS s 144 1202, 144 1203

History: 32 SR 831